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Limited Dependent Variables

▶ What exactly does an OLS estimation coefficient capture?
▶ Under which technical conditions is that estimation BLUE?
▶ Under which conditions does that kind of modeling make sense intuitively/in a

modeling context?
▶ Bonus: What is the difference between consistency and unbiasedness?



Limited Dependent Variables 2

̂𝛽𝑂𝐿𝑆 is an approximation to 𝜕𝑦
𝜕𝑋 . Inituitively, this makes the most sense with a

continuous dependent variable and covariates.
̂𝛽𝑂𝐿𝑆 is consistent and efficient und the Gauss-Markov conditions.

▶ 𝐸𝜖𝑖 = 0 ∀𝑖 ∈ 𝑁
▶ 𝜖1, ..., 𝜖𝑛 and 𝑥1, ..., 𝑥𝑛 are independent
▶ 𝑉 𝑎𝑟(𝜖𝑖) = 𝜎2 ∀𝑖 ∈ 𝑁
▶ 𝑐𝑜𝑣(𝜖𝑖, 𝜖𝑗) = 0 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑗 ≠ 𝑖



Limited Dependent Variables 3

Often microeconomic data is presented in discrete or discrete mixed continuous form.

Problem 1: If one estimates binary data using OLS, 𝑥′𝛽 must be read as a probability,
which by definition can only be between 0 and 1. This is only possible if either x or 𝛽
are artificially restricted.

Problem 2: Usually the error term is not normally distributed and suffers from
heteroskedasticity:

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖) = 𝑥′
𝑖𝛽

𝑃(𝜖 = −𝑥′
𝑖𝛽 ∣ 𝑥𝑖) = 𝑃(𝑦𝑖 = 0 ∣ 𝑥𝑖) = 1 − 𝑥′

𝑖𝛽
𝑃(𝜖 = 1 − 𝑥′

𝑖𝛽 ∣ 𝑥𝑖) = 𝑥′
𝑖𝛽

⇒ 𝑉 (𝜖 ∣ 𝑥𝑖) = 𝑥′
𝑖𝛽(1 − 𝑥′

𝑖𝛽) ≠ 𝑉 (𝜖)

Clearly, a bipolar distribution is not Gaussian Normal, and the variance depends on the
value of the covariates.



Binary Choice Modeling

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖) = 𝐺(𝑥𝑖, 𝛽)
If you choose for the function 𝐺(𝑥𝑖, 𝛽) the Gaussian Normal distribution Φ(𝑥′

𝑖𝛽), this is
called a Probit model:

𝜕Φ(𝑥′
𝑖𝛽)

𝜕𝑥𝑖𝑘
= 𝜙(𝑥′

𝑖𝛽)𝛽𝑘

The logistical distribution 𝑒𝑥𝑝(𝑥′
𝑖𝛽)

1+𝑒𝑥𝑝(𝑥′
𝑖𝛽) gives a Logit model.

𝜕𝐿(𝑥′
𝑖𝛽)

𝜕𝑥𝑖𝑘
= 𝑒𝑥𝑝(𝑥′

𝑖𝛽)
(1 + 𝑒𝑥𝑝(𝑥′

𝑖𝛽))2 𝛽𝑘



Latent Variable Models

One can also model a bivariate outcome as the result of a censoring process. For this,
one makes behavioural assumptions on why a variable never materializes.

Let 𝑦∗
𝑖 be an underlying (latent) variable. As an example, think of a reservation wage:

If a person is offered less than $ 1500, they may not enter employment but choose to
do domestic labor instead.

𝑦∗
𝑖 = 𝑥′

𝑖𝛽 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2)
𝑦𝑖 = 1 𝑖𝑓 𝑦∗

𝑖 > 0
𝑦𝑖 = 0 𝑖𝑓 𝑦∗

𝑖 < 0



Latent Variable Models

The model can be estimated using a simple likelihood formulation.

𝐿(𝛽) =
𝑁

∏
𝑖

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖; 𝛽)𝑦𝑖 𝑃(𝑦𝑖 = 0 ∣ 𝑥𝑖; 𝛽)1−𝑦𝑖

Since the natural logarithm is a monotonous function, the value 𝛽 that maximizes the
likelihood also maximizes the log-likelihood 𝐿𝐿(𝛽). Since Log-Likelhoods can be
summed up rather than multiplied the procedure becomes computationally more
efficient and does less often run into problems with floating digits.

𝐿𝐿(𝛽) =
𝑁

∑
𝑖

𝑦𝑖𝑙𝑜𝑔(𝑃 (𝑦𝑖 = 1 ∣ 𝑥𝑖; 𝛽)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(𝑃 (𝑦𝑖 = 0 ∣ 𝑥𝑖; 𝛽))

Both Logit and Probit models can be estimated using Maximum (Log-) Likelihood
routines.



Goodness of Fit

Goodness of Fit in probabilistic models mostly measure either precision in calculated
probabilities compared to observed frequencies or prediction of observed data.

Often GOF statistics implicitly compare the model with one that includes only a
constant by comparing the calculated likelihoods. Let

Amemiya Pseudo-𝑅2:
1 − 1

1 + 2(𝑙𝑜𝑔𝐿1 − 𝑙𝑜𝑔𝐿0)/𝑁

McFadden statistic:
1 − 𝑙𝑜𝑔𝐿1

𝑙𝑜𝑔𝐿0



Restricted Dependent Variables: TOBIT

When dependent variables are continuous, but constrained, more problems arise.
Examples are when a variable is zero for a large part of the population and positive for
the rest (eg. expenditures, income from a certain type of activity or asset, work hours).

Tobit models are well-suited for such latent variable problems. It applies conditional
probabilities ot the problem, usually introducing a Gaussian Normal density function.

𝑃(𝑦𝑖 = 0) = 𝑃(𝑦∗
𝑖 < 0) = 𝑃(𝜖𝑖 < −𝑥′

𝑖𝛽) = 1 − Φ( 𝑥′
𝑖𝛽
𝜎 )

𝐸(𝑦𝑖 ∣ 𝑦𝑖 > 0) = 𝑥′
𝑖𝛽 + 𝐸(𝜖𝑖 ∣ 𝜖𝑖 > −𝑥′

𝑖𝛽) = 𝑥′
𝑖𝛽 + 𝜎 𝜙(𝑥′

𝑖𝛽/𝜎)
Φ(𝑥′

𝑖𝛽/𝜎)



Restricted Dependent Variables: TOBIT 2

The parameters obtained in a Maximum-Likelihood procedure can be interpreted in
two ways. Note that the ML procedure has to simultaneously estimate 𝛽 and 𝜎.

Marginal impact on the probability to observe a zero value in the dependent variable:

𝜕𝑃(𝑦𝑖 = 0)
𝜕𝑥𝑖𝑘

= −𝜙( 𝑥′
𝑖𝛽
𝜎 ) 𝛽𝑘

𝜎

Marginal impact on th expected value of the dependent variable, conditional on a
positive realization:

𝐸(𝑦𝑖) = 𝑥′
𝑖𝛽Φ(𝑥′

𝑖𝛽/𝜎) + 𝜎𝜙(𝑥′
𝑖𝛽/𝜎)

𝜕𝐸(𝑦𝑖)
𝜕𝑥𝑖𝑘

= 𝛽𝑘Φ(𝑥′
𝑖𝛽/𝜎)

𝜕𝐸(𝑦∗
𝑖 )

𝜕𝑥𝑖𝑘
= 𝛽𝑘



Specification/Estimation Issues

Violations of the distributional assumptions on 𝜖𝑖 (e.g. non-normality and
heteroskedasticity) will lead to inconsistent parameter estimations.

Pagan and Vella (1989) propose a moment-based test for normality, as for normally
distributed errors it should hold that 𝐸(𝜖3/𝜎3 ∣ 𝑥𝑖) = 0 and 𝐸(𝜖4/𝜎4 − 3 ∣ 𝑥𝑖) = 0
(absence of skewness and kurtosis.



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model

One can argue that underlying the restriction of a continuous variable 𝑦 (say: wages)
lies a binary outcome ℎ (say: to seek employment or not).

𝑦∗
𝑖 = 𝑥′

1𝑖𝛽1 + 𝜖1
ℎ∗

𝑖 = 𝑥′
2𝑖𝛽2 + 𝜖2

𝑦𝑖 = 𝑦∗𝑖, ℎ𝑖 = 1 𝑖𝑓 ℎ∗
𝑖 > 0

𝑦𝑖 = 0, ℎ𝑖 = 0 𝑖𝑓 ℎ∗
𝑖 ≤ 0



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model 2

Under the assumption that 𝜖2 ∼ 𝑁(0, 1) ⇒ 𝜎2
2 = 1:

𝐸(𝑤𝑖 ∣ ℎ𝑖 = 1) = 𝑥′
1𝑖𝛽1 + 𝜎12

𝜙(𝑥′
2𝑖𝛽2)

Φ(𝑥′
2𝑖𝛽2)

𝜎12 = 𝜌12𝜎1
𝜌12 = 𝐶𝑜𝑟𝑟(𝜖1, 𝜖2)

# Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model 3

The model can be denoted as a maximum likelihood estimation.

𝑙𝑜𝑔𝐿3(𝛽, 𝜎2
1 , 𝜎12) = ∑

𝑖∈𝐼0

𝑙𝑜𝑔𝑃 (ℎ1 = 0) + ∑
𝑖∈𝐼1

[𝑙𝑜𝑔𝑓(𝑦𝑖 ∣ ℎ1 = 1) + 𝑙𝑜𝑔𝑃(ℎ𝑖 = 1)]

= ∑
𝑖∈𝐼0

𝑙𝑜𝑔𝑃 (ℎ1 = 0) + ∑
𝑖∈𝐼1

[𝑙𝑜𝑔𝑓(𝑦𝑖) + 𝑙𝑜𝑔𝑃(ℎ𝑖 = 1 ∣ 𝑦𝑖)]



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model 4

Heckman provides a two step estimation technique which is often applied in research.

𝑦𝑖 = 𝑥′
1𝑖𝛽1 + 𝜎12𝜆𝑖 + 𝜂𝑖

𝜆𝑖 = 𝜙(𝑥′
2𝑖𝛽2)

Φ(𝑥′
2𝑖𝛽2)

The only unknown in 𝜆𝑖 is 𝛽2, which can be estimated in a Tobit routine to be then
plugged into a linear regression for the upper equation.



Panel Data

Panel Data combines aspects of time series and cross-sectional econometric analysis.

We will have to deal with multi-dimensional group-specific effects.

Popular examples:

▶ Longitudinal Surveys
▶ Cross-Country Macro analysis
▶ Experiments rolled out in multiple waves (Why do researchers do that?)

Panel Data Econometrics is among the most popular methods is economic research.



Panel Data: Big Questions

▶ Does the time component matter? Why/Why Not?
▶ Which groups of observations come to mind? Do groups matter? Why/Why Not?
▶ How does the panel structure of data change economic modeling questions?

What additional knowledge is there to find? Which additional, non-statistical
difficulties arise?

▶ What can count as an observation?



Panel Data: Pro and Con

+ Data allows for more complicated and more realistic economic models. Example:
What is the insight won from observing (a) the average rate of profit in one year, (b)
the average rate of profit over 20 years and (c) the industrial average rate of profit
over 20 years?

+ Estimate changes on an individual (observation) level

- Independence of observations no longer holds

- Missing observations



Panel Data: Representation

You have observations (𝑦𝑖𝑡, 𝑥𝑖𝑡) for individuals 𝑖 ∈ 𝐼 and periods 𝑡 ∈ 𝑇 . Estimate the
impact of 𝑥 on 𝑦.

The most general formulation of a model is:

𝑦𝑖𝑡 = 𝛼𝑖𝑡 + 𝑥′
𝑖𝑡𝛽𝑖𝑡 + 𝜖𝑖𝑡

What is the insurmountable weakness of this model? How is it located between
descriptive and inference statistics?



Panel Data: OLS estimation

Estimate the impact of 𝑥 on 𝑦 by simple OLS:

𝑦𝑖𝑡 = 𝛼 + 𝑥′
𝑖𝑡𝛽 + 𝜖𝑖𝑡

Note: ̂𝛽𝑂𝐿𝑆 is the best linear unbiased estimator (BLUE) only if the Gauss-Markov
properties are fulfilled. With regard to independent observations and
homoskedasticity, this is problematic.



Panel Data: Clustered Errors

You cannot assume that 𝜖𝑖𝑡 is i.i.d., and specifically that 𝜖𝑖𝑡 ∼ 𝑁(0, 𝜎).
Introduce clustered errors:

𝑦𝑖𝑡 = 𝛼 + 𝑥′
𝑖𝑡𝛽 + 𝜖𝑖𝑡

𝜖𝑖𝑡 ∼ 𝑁(0, 𝜎𝑖)



Panel Data: OLS versus cluster-robust standard errors

OLS:

reg lwage ed exp ind

Source | SS df MS Number of obs = 4,165
-------------+---------------------------------- F(3, 4161) = 484.01

Model | 229.434018 3 76.478006 Prob > F = 0.0000
Residual | 657.470884 4,161 .158007903 R-squared = 0.2587

-------------+---------------------------------- Adj R-squared = 0.2582
Total | 886.904902 4,164 .212993492 Root MSE = .3975

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
ed | .0803785 .0023154 34.72 0.000 .0758391 .0849179

exp | .01251 .0005793 21.59 0.000 .0113743 .0136458
ind | .1070021 .0130489 8.20 0.000 .0814193 .1325849

_cons | 5.353169 .0355112 150.75 0.000 5.283549 5.42279
------------------------------------------------------------------------------



Panel Data: OLS versus cluster-robust standard errors 2

Cluster-Robust Errors:

reg lwage ed exp ind, vce(cluster id)

Linear regression Number of obs = 4,165
F(3, 594) = 83.29
Prob > F = 0.0000
R-squared = 0.2587
Root MSE = .3975

(Std. Err. adjusted for 595 clusters in id)
------------------------------------------------------------------------------

| Robust
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
ed | .0803785 .0053806 14.94 0.000 .0698112 .0909458

exp | .01251 .0014803 8.45 0.000 .0096029 .0154172
ind | .1070021 .0272083 3.93 0.000 .0535659 .1604383

_cons | 5.353169 .0856763 62.48 0.000 5.184904 5.521435
------------------------------------------------------------------------------

Spot a difference?



Clustered Standard Errors: What Happened?

In a standard OLS regression, you assume that the error terms 𝜖𝑖 are independent and
Gaussian Normal distributed ∼ 𝑁(0, 𝜎2)
In a panel setup, you cannot just assume that: Characteristics of individuals are not
independent over time (your wage in 2018 cannot be modeled as the outcome of an
experiment independent of your wage in 2017).

Furthermore, observations might be clustered: individuals might live in the same city,
work a similar job, and so on. You cannot just assume that the impact of 𝑥𝑖 on 𝑦𝑖 is
independent although you know of this clustering, even if you cannot observe the
clusters directly.

In a panel setup, you try to “catch” these unobserved effects using a fixed effects
indicator (more on that later). In the above case, the indicator is ther personal
identification number id.Software packages can automatically search for clusters. We
then re-calculate coefficient standard errors taking into account that 𝜖𝑖𝑡 𝑁(0, 𝜎2

𝑐 ),
where 𝑐 ∈ 𝐶 denotes the cluster.

Note: Calculating cluster robust standard errors allows you to not specify a model of
how clusters affect the outcome. However, you need to assume that the number of
clusters approaches infinity (Ibragimov and Müller, 2016)



Clustered Standard Errors 2: How did it happen?

In OLS, the degrees-of-freedom corrected estimator 𝑠2 = 1
𝑁−𝐾 ∑𝑖(𝑒𝑖)2 with 𝑒𝑖 the

forecast residuals can be used to efficiently estimate a coefficient standard error.
(Verbeek 2004, 18f)

√ ̃𝑉 (𝑏𝑘) = √(𝑠2(∑
𝑖

𝑥2
𝑖,𝑘)−1

In a clustered design, you choose clusters or let a software choose it by some efficiency
properties for you.

̂𝑉 ( ̂𝑏𝑘) = [𝑋′𝑋]−1[
𝐶

∑
𝑐

𝑥′
𝑐 ̂𝜖′

𝑐 ̂𝜖𝑐𝑥𝑐][𝑋′𝑋]−1

You retrieve the coefficient standard error by taking the square root of the variance.



Panel Data: Representations

Enough about errors, more about predicitions.

Models: Generalizations of an assumed structure of the data. Start at the beginning.
Note that 𝑢𝑖𝑡 is the observed residual, and not necessarily the model error term.

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽′𝑥𝑖𝑡 + 𝑢𝑖𝑡

Unit-Specific Representation (in stacked form, i.e. 𝑇 equations)

𝑦𝑖 = 𝛼𝑖 𝜏𝑡+𝑋𝑖 𝛽+𝑢𝑖
(𝑇 × 1) = (1 × 1) (𝑇 × 1)+(𝑇 × 𝑘) (𝑘 × 1)+(𝑇 × 1)

Time-Specific Representation (𝑁 equations)

𝑦𝑡 = 𝛼 𝑋𝑡𝛽+ 𝑢𝑡
(𝑁 × 1) = (𝑁 × 1) (𝑁 × 𝑘)+(𝑘 × 1)+ (𝑁 × 1)



Panel Data Estimation: Pooled OLS

Under assumption of homogenous intercept 𝛼𝑖 = 𝛼 ∀𝑖 ∈ 𝑁 and strictly exogenous
covariates 𝑥𝑖, the panel can be estimated using ordinary least squares OLS.

STATA:

reg lwage ed exp ind, vce(cluster id)



Fixed Effect estimation

In a fixed effects estimation, you allow for individual effects, formalized in
heterogenous intercepts 𝛼𝑖.

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽′𝑥𝑖𝑡 + 𝑢𝑖𝑡

Stochastically, we can say that 𝛼𝑖 are drawn from a joint distribution of 𝛼𝑖, 𝑥𝑖𝑡, 𝑢𝑖𝑡
with the parameters of the distribution allowed to increase with the same speed as the
number of cross-sectional observations.

Increasing the number of regression coefficients 𝛼𝑖, 𝛽 by N strongly decreases the
degrees of freedom.

Methodologically estimating a fixed effects model amounts to eliminating the fixed
effects from the regression (e.g. by using first difference 𝑥𝑖𝑡 − 𝑥𝑖𝑡−1 or mean difference
𝑥𝑖𝑡 − ̄𝑥𝑖 as covariates), then calculate them from the estimated coefficients.



Degrees of Freedom

The degrees of freedom (DF) indicate the number of independent values that can vary
in an analysis without breaking any constraints. it increases in independent
information you can use for parameter estimation, and decreases in parameters you
have to estimate due to your modeling choices.

In frequentist statistics, hypothesis testing is based in the assumption that coefficient
estimates (such as ̂𝛽) foolow some distribution, where the shape is co-determined by
the degrees of freedom (Student T, 𝜒2, …).

For low degrees of freedom, these distributions become very narrow, making
hypothesis testing difficult. Coefficietn estimates become unreliable, and the
hypothesis tests lose testing power.



Fixed Effects: Intuition

You want to estimate 𝛽 after eliminating individual effects 𝛼𝑖.

One approach is to calculate averages over time:

̄𝑦𝑖 = 𝛼𝑖 + 𝛽′ ̄𝑥𝑖 + 𝑢̄𝑖

Then, for each observation 𝑖 ∈ 𝑁 :

𝑦𝑖𝑡 − ̄𝑦𝑖 = 𝛽′(𝑥𝑖𝑡 − ̄𝑥𝑖) + (𝑢𝑖𝑡 − 𝑢̄𝑖)

This is called the within transformation of a fixed effect model, and can be efficiently
estimated by pooled OLS.

Note that 𝑥𝑖𝑡 needs to be time-varying for the within estimator to be meaningful.
Furthermore note that expected values 𝐸(𝑦𝑖𝑡 ∣ 𝑥𝑖𝑡) = 𝐸(𝑎𝑖 ∣ 𝑥𝑖𝑡) + 𝛽′𝑥𝑖𝑡 cannot be
estimated, as we have no estimate way for estimating the intercept in short panels.
(Cameron and Trivedi 2009, 231)



FE Estimation in STATA 1

For panel data estimation, STATA has special commands like xtreg, xtline, and so
on. Here, the x denotes the cross-sectional and t the time dimension.

Load data:

use mus08psidextract.dta, clear

Set the panel indicators using xtset.

xtset t id

panel variable: t (strongly balanced)
time variable: id, 1 to 595

delta: 1 unit

Perform a within regression including fixed effects using the xtreg command including
the , fe specification.



FE Estimation in STATA 2

. xtreg lwage ed exp ind, fe vce(robust)

Fixed-effects (within) regression Number of obs = 4,165
Group variable: t Number of groups = 7

R-sq: . xtreg lwage exp ind, fe

Fixed-effects (within) regression Number of obs = 4,165
Group variable: id Number of groups = 595

R-sq: Obs per group:
within = 0.6507 min = 7
between = 0.0251 avg = 7.0
overall = 0.0439 max = 7

F(2,3568) = 3322.89
corr(u_i, Xb) = -0.9145 Prob > F = 0.0000

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exp | .0969207 .0011893 81.50 0.000 .094589 .0992524
ind | .022139 .0155742 1.42 0.155 -.0083963 .0526743

_cons | 4.743349 .0244748 193.81 0.000 4.695363 4.791335
-------------+----------------------------------------------------------------

sigma_u | 1.0592693
sigma_e | .15349733

rho | .97943334 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(594, 3568) = 54.58 Prob > F = 0.0000



Fixed Effects: Retrieve the intercept

̂𝛼𝑖 = ̄𝑦𝑖 − ̂𝛽′
𝐹𝐸 ̄𝑥𝑖

Note: In short and wide panels (small N, large T) the intercept cannot be efficiently
retrieved.



Fixed Effects: Stacked LSDV Estimation

The Within-Estimator is equivalent to a stacked estimation with 𝑁 dummy variables
𝛼𝑖. This procedure is called the least-squares dummy variable (LSDV) estimator. It
cannot estimate 𝛼𝑖 consistently in short panels, but consistently estimates 𝛽.
(Cameron and Trivedi 2009, 253)

In STATA, this can be estimated using the areg command and specifying the fixed
effects dimension in the absorb specification.



Fixed Effects: Stacked LSDV Estimation in STATA

areg lwage exp ind, absorb(id) vce(cluster id)

Linear regression, absorbing indicators Number of obs = 4,165
Absorbed variable: id No. of categories = 595

F( 2, 594) = 1282.85
Prob > F = 0.0000
R-squared = 0.9052
Adj R-squared = 0.8894
Root MSE = 0.1535

(Std. Err. adjusted for 595 clusters in id)
------------------------------------------------------------------------------

| Robust
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exp | .0969207 .001914 50.64 0.000 .0931616 .1006798
ind | .022139 .0245714 0.90 0.368 -.0261185 .0703965

_cons | 4.743349 .039158 121.13 0.000 4.666444 4.820254
------------------------------------------------------------------------------



Random Effects: Properties

The random effects estimator assumes that the individual effects 𝛼𝑖 are drawn from a
joint probabilistic distribution. Often, this is modeled as part of the error term, which
in turn allows for introducing a general intercept term, a primitive form of hierarchical
modeling.

You will not be able to efficiently estimate an RE model using OLS, and will need to
specifiy a GLS model estimation method

𝑦𝑖𝑡 = 𝛼 + 𝑥′
𝑖𝑡𝛽 + 𝑢𝑖𝑡

𝑢𝑖𝑡 = 𝛼𝑖 + 𝜖𝑖𝑡
𝐸(𝜖𝑖𝑡 ∣ 𝑥𝑖𝑡) = 0 ⇒ 𝐸(𝑢𝑖𝑡 ∣ 𝛼𝑖, 𝑥𝑖𝑡) = 0

This implies a number of important properties for 𝑢𝑖𝑡.

𝐸(𝑢2
𝑖𝑡) = 𝜎2

𝛼 + 𝜎2 + 2𝐶𝑜𝑣(𝛼𝑖, 𝑢𝑖𝑡) = 𝜎2
𝛼 + 𝜎2

𝐸(𝑢𝑖𝑡𝑢𝑖𝑠) = 𝐸[(𝛼𝑖 + 𝑢𝑖𝑡)(𝛼𝑖 + 𝑢𝑖𝑠)] = 𝜎2
𝛼



Random Effects: Efficiency

A GLS estimation of an RE model is consistent for 𝛽 with 𝑁 or 𝑇 going to infinity if
you assume exogeneity of covariates, normal distribution of error terms, and a
non-singular asymptotical variance-covariance matrix.

Note that for ML estimation in the FGLS, you need to assume that both 𝛼𝑖 and 𝜖𝑖𝑡 are
i.i.d.



Random Effects: Estimation in STATA

xtreg lwage exp ind, re

Random-effects GLS regression Number of obs = 4,165
Group variable: id Number of groups = 595

R-sq: Obs per group:
within = 0.6500 min = 7
between = 0.0249 avg = 7.0
overall = 0.0438 max = 7

Wald chi2(2) = 2807.13
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

------------------------------------------------------------------------------
lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exp | .0612741 .0011572 52.95 0.000 .059006 .0635423
ind | -.0123885 .0177007 -0.70 0.484 -.0470812 .0223041

_cons | 5.464722 .0309463 176.59 0.000 5.404068 5.525375
-------------+----------------------------------------------------------------

sigma_u | .38545785
sigma_e | .15349733

rho | .86312569 (fraction of variance due to u_i)
------------------------------------------------------------------------------



Relationship between RE and pooled OLS

Including a general intercept term 𝛼𝑖 and keeping 𝑢𝑖𝑡 = 𝛼𝑖𝑡 + 𝜖𝑖𝑡, the RE model has
𝐸(𝑢𝑖𝑡 ∣ 𝑋) = 0. Under the additional assumptions of deterministic and bounded
covbariates as well asa asymptotically positive definite variance-covariance matrix
(Pesaran 2015, 636), cross-sectional independence of the errors and allowing for serial
correlation between errors in the time dimension (all included in RE), pooled OLS is
consistent for RE.

However, under the RE specifications that 𝜖𝑖𝑡 is serially uncorrelated and
homoskedastic, pooled OLS is inefficient.

If the last assumption is unlikely to hold, pooled OLS may be preferrable to FGLS
estimation.



Relationship between RE and FE

The relationship between the RE and FE setup is determined by the heterogeneity in
𝛼𝑖 and 𝜎2

𝛼. For maximum heterogeneity, RE converges to FE, for minimum
heterogeneity, RE converges to the pooled OLS estimator.

Furthermore, for 𝑇 → ∞, RE and FE estimators converge.



Deciding on a model

There are different approaches to choosing between FE and RE setups. These are
some:

1 Theoretical determinationn (Pesaran 2015): If we are interested in
between-individual heterogeneity, FE makes sense. If 𝑁 is large and you consider it a
random sample from the population, RE is more appropriate. More technically, the
decision variable is your beliefs about the correlation between individual effects and
covariates 𝑥𝑖𝑡.

2 Hausman Test: The HT tests under the null that effects are random and compares
the FE and RE estimators. Under the Null, the estimators converge. in STATA, you
need to run both models, store the estimates, and use the hausman command.

3 Gelman’s Rejection of fixed effects: Andrew Gelman, an important researcher into
Bayesian multilevel modeling argues, that the notion of “fixed effects models” makes
little effect in and of itself, and one should rather assume all downstream hierarchical
coefficients are the product of some random distribution. However, this is easier said
in Bayesian statistics, as it allows for distributions other than the Gaussian Normal.



Hausman Test: STATA

. quietly xtreg lwage exp ind, fe

. estimates store FE

. quietly xtreg lwage exp ind, re

. estimates store RE

. hausman FE RE

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| FE RE Difference S.E.

-------------+----------------------------------------------------------------
exp | .0969207 .0612741 .0356466 .0002741
ind | .022139 -.0123885 .0345275 .

------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 15144.30

Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)


