Lab 3: Endogeneity and Instrumental Variable Estimation in Panel Data

GECO 6281 Advanced Econometrics 1

Patrick Mokre

Fall 2019

Lab 0: Introduction to the course

- What are the learning Outcomes expected for Advanced Econometrics 1?
- Which softwares are we using, what are their strengths and weaknesses?
- What is the main difference between STATA and RStudio regarding datasets?
- Which software do you use to load Google Drive files into Apps Anywhere's STATA 15 version?
- In which formats do we store data?

Lab 1: Panel Data

- What are the two dimensions of panel data?
- Which are the three main estimation methods we use for panel data? When are they consistent?
- How do we decide which estimation method to use?
- Why do degrees of freedom matter in statistical inference?
- How do first difference and pooled OLS estimation of a fixed effects model correspond?

Both FE and RE models produce consistent estimators only if covariates x_{it} are strictly exogenous, i.e. $E(\epsilon_{it} \mid X) = E(\epsilon_{it}) = 0 \quad \forall i \in N, t \in T.$ (Pesaran 2015, 635)

 $\label{eq:consistency:} \hat{\beta} \to \beta \text{ for either } T \to \infty \text{ or } N \to \infty. \text{ If an estimator is not consistent, it cannot be unbiased.}$

Endogeneity: There is an unobserved correlation between covariates x_{it} and residuals u_{it} . This lead to a bias in $\hat{\beta}$.

Assume you have a model with:

$$y_t = \alpha + \beta_1 x_t + \epsilon_t$$

But x_t is endogenous:

$$x_t = y_t + z_t$$

The problem becomes obvious when the model is presented in structural form

$$\begin{split} x_t &= \frac{\alpha}{1-\beta} + \frac{1}{1-\beta} z_t + \frac{1}{1-\beta} \epsilon_t \\ y_t &= \frac{\alpha}{1-\beta} + \frac{\beta}{1-\beta} z_t + \frac{1}{1-\beta} \epsilon_t \end{split}$$

From which it follows that:

$$cov(x_t,\epsilon_t) = \frac{1}{1-\beta} cov(z-t,\epsilon_t) + \frac{1}{1-\beta}V(\epsilon_t) = \frac{\sigma^2}{1-\beta}$$

$$\begin{split} plim(\hat{\beta}) &= \beta + \frac{cov(x_t, \epsilon_t)}{Vx_t} \\ V(x_t) &= V(\frac{1}{1-\beta}z_t + \frac{1}{1-\beta}\epsilon_t) = \frac{1}{(1-\beta)^2}(V(z_t + \sigma^2)) \\ plim(\hat{\beta}) &= \beta + (1-\beta)\frac{\sigma^2}{V(z_t) + \sigma^2} \end{split}$$

So for $\beta \in (0,1)$, endogeneity produces overestimation of the effects.

The **problem** with endogeneity is that you have a causal relationship from y_i to x_i . One possible solution is to find a **proxy** or **instrumental variable** z_i which helps explain x_i , but is not determined by y_i .

This allows for 2-step-least-sugare (2SLS) estimation under two assumptions:

$$\begin{array}{l} \blacktriangleright \quad \text{relevance:} \ \frac{\partial X}{\partial Z} \neq 0 \\ \blacktriangleright \quad \text{independence:} \ E((y_i - \alpha - x_i\beta)z_i) = 0 \end{array}$$

In a 2SLS estimation, you first estimate the impact of z_i on x_i , and then the impact of z_i on y_i . Analytically, you derive the IV estimator as $\hat{\beta_{IV}} = (\sum_i^N z_i x_i')^{-1} \sum_i^N z_i y_i$.

Caution: **forbidden regressions**: You must not apply 2SLS regressions to non-linear models, e.g. instrumentalizing a dummy variable in a PROBIT regression, since the first-stage residuals might be correlated with the second-stage fitted values and covariates. (Angrist and Prischke 2009, 190f)

2SLS in STATA

Instrumen

In STATA you use the ivregress 2sls command and assign instrumented as well as instrument variables in parentheses. The example from STATA help is intuitive, where you want to estimate the impact of housing value on rents. In orthodox economic theory, the value of an asset can be derived from the income one receives from it, i.e. $E((y_i - \beta x_i) x_i) \neq 0$

```
use http://www.stata-press.com/data/r13/hsng, clear
```

. ivregress 2sls ren pcturban (hsngval=faminc i.region)

ntal	variables	(2SLS)	regression	Number of obs	=	50
				Wald chi2(2)	=	90.76
				Prob > chi2	=	0.0000
				R-squared	=	0.5989
				Root MSE	=	22.166

rent	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
hsngval pcturban _cons	.0022398	.0003284 .2987652 15.22839	6.82 0.27 7.93	0.000 0.785 0.000	.0015961 504053 90.85942	.0028836 .667085 150.5536
Instrumented: hsngval Instruments: pcturban faminc 2.region 3.region 4.region						

2SLS estimates are only consistent and have reasonably small standard errors if the **instruments are strong**. This is measured by the **F-statistic** and may be retrieved using the estat(firststage) command.

. estat firststage

First-stage regression summary statistics							
 Variable +	-	Adjusted R-sq.	Partial R-sq.	F(4,44)	Prob > F		
hsngval		0.6557	0.5473	13.2978	0.0000		

The p-value for the F-statistic is most important to the frequentist logic in **weak instrument testing**.

Instrumental Variables in Panels

When dealing with both a cross-sectional and a time dimension, instrumenting becomes more difficult.

Your covariates need to be uncorrelated with your time-invariant and yout time-varying components of error for FE estimation. Then you can identify all time-varying estimators.

. use mus08psidextra . xtreg lwage ed exp note: ed omitted bec	wks, fe	rity			
Fixed-effects (withi Group variable: id	n) regression			obs = groups =	
R-sq: within = 0.650 between = 0.025 overall = 0.044	51		Obs per g	roup: min = avg = max =	7 7.0 7
corr(u_i, Xb) = -0.	9142		F(2,3568) Prob > F		3325.13 0.0000
lwage	Coef. Std. Err.				Interval]
ed	0 (omitted)				00027

Problem: The FE estimation cannot identify the impact of time-invariant, such as years of education.

Further Problem: Assume that weeks worked wks is correlated with the time-varying part of the error (i.e. that workers who get paid more tend to stay on the job longer, or the other way around).

To solve the second problem, instrument weeks worked by marital status (External Instrumentation)

IV in Fixed Effect Estimation 2: STATA

. xtivreg lwage ed exp (wks=ms), fe							
Fixed-effects Group variable		regression			of obs = of groups =	-	
R-sq: within = between = overall =	0.0126			Obs per	group: min = avg = max =	7.0	
corr(u_i, Xb)	= -0.8570				mi2(2) = chi2 =		
lwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
		.2486092 (omitted)		0.629	6072701	.3672601	
exp	.0962844	.0043809	21.98	0.000	.0876979	.1048709	
_cons	10.38235	11.66474	0.89	0.373	-12.48011	33.24482	
•	1.1547835 .53823759 .82152826	(fraction	of varia	nce due t	:o u_i)		
F tost that a		F(594 3568	.) =	3 34	Prob > F	= 0 0000	

Hausman and Taylor provide a instrumentalization procedure that allows for both endogenous time-varying and endogenous time-invariant variables.

Endogenous time-varying variables are estimated in a fixed effects procedure as their deviation from their individual mean over time. Endogenous time-invariant covariates are instrumentalized by exogenous time-invariant covariates. Note that there needs to be at least as many time-invariant exogenous as time-invariant endogenous variables, and they need to be **relevant** in estimation.

The procedure works without external instruments, and can be extended by using the non-diagonal covariance matrix of the error term to increase efficiency.

They distinguish four sets of variables, time-varying exogenous x_{1it} , time-varying endogenous x_{2it} , time-invariant exogenous w_{1it} and time-invariant endogenous w_{2it} .

Consider an individual effects notation. x_{1it} and w_{1it} are exogenous (uncorrelated with α_i), x_{1it} and x_{2it} are time-varying. All are uncorrelated with ϵ_{it} . The challenge is to estimate both x_{2it} and w_{2it} consistently.

$$y_{it} = x_{it1}\beta_1 + x_{2it}\beta_2 + w_{1it}\gamma_1 + w_{2it}\gamma_2 + \alpha_i + \epsilon_{it}$$

Hausman and Taylor propose a random effects notation.

$$\begin{split} \tilde{y}_{it} &= \tilde{x}_{it1}\beta_1 + \tilde{x}_{2it}\beta_2 + \tilde{w}_{1it}\gamma_1 + \tilde{w}_{2it}\gamma_2 + \tilde{\alpha}_i + \tilde{\epsilon}_{it} \\ \tilde{x}_{it} &= x_{it} - \hat{\theta}_i \bar{x}_i \end{split}$$

The random effects formulation with individual $\hat{\theta}_i$ allows for estimation of γ_1,γ_2 as $w_{1it},w_{2it}\neq 0.$

However, $\tilde{\alpha_i} \neq 0$ and the individual effects are correlated with endogenous covariates x_{2it}^2 and w_{2it}^2 . Here you need to **use instruments**.

 $\ddot{x}_{2it} = x_{2it} - \bar{x_{2i}}$ is uncorrelated with $\tilde{\alpha}_i$ and is used as an instrument for \tilde{x}_{2it} .

Exogenous and time-varying covariates x_{1it} are used as an instrument for time-invariant exogenous w_{2it} in a 2SLS procedure. Note that vector x'_{1it} has to be at least as long as w'_{2it} .

use mus08psidextract.dta, clear xthtaylor lwage occ sout smsa ind exp exp2 wks ms union fem blk ed, (endog exp exp2 wks ms union ed)

Hausman-Taylor Instruments in STATA

The goal is to find a suitable estimation of years in education ed using the xthtaylor command in STATA, which is endogenous as it is correlated with individual effects α_i .

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed, endog(ex

Hausman-Taylor estimation					of obs =	4,165
Group variable:	Group variable: id					595
				Obs per	groun	
				opp bot	min =	7
						7
					avg =	1
					max =	(
Random effects	u_i ~ i.i.d.			Wald chi	= = =	6891.87
				Prob > c	:hi2 =	0.0000
lwage	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
+-						
TVexogenous						
occ	0207047	.0137809	-1.50	0.133	0477149	.0063055
south	.0074398	.031955	0.23	0.816	0551908	.0700705
smsa	0418334	.0189581	-2.21	0.027	0789906	0046761
ind	.0136039	.0152374	0.89	0.372	0162608	.0434686
Ind	.0100000	.0102014	0.00	0.012	.0102000	.0104000

TVendogenous						
exp	.1131328	.002471	45.79	0.000	.1082898	.1179758
exp2	0004189	.0000546	-7.67	0.000	0005259	0003119
wks	.0008374	.0005997	1.40	0.163	0003381	.0020129
ms	0298508	.01898	-1.57	0.116	0670508	.0073493
union	.0327714	.0149084	2.20	0.028	.0035514	.0619914
TIexogenous						
fem	1309236	.126659	-1.03	0.301	3791707	.1173234
blk	2857479	.1557019	-1.84	0.066	5909179	.0194221
TIendogenous						
ed	.137944	.0212485	6.49	0.000	.0962977	.1795902
I						
_cons	2.912726	.2836522	10.27	0.000	2.356778	3.468674
+						
sigma_u	.94180304					
sigma_e	.15180273					
rho	rho .97467788 (fraction of variance due to u_i)					
Note: TV refers to time varying; TI refers to time invariant.						

As Panel Data is observed over time, including a lagged variable or **auto-regressive** term is an intuitive modeling choice.

Caution: OLS with a lagged variable and serially correlated errors leads to **inconsistent** estimators (as it does in the non-panel case).

When estimating a dynamic panel using fixed effects, **first differencing** must be used rather than **mean differencing**.

Arellano-Bond instrumentalization allows for efficient FD estimation in a dnymic model. Estimated parameters are consistent with both FE and RE models.

$$y_{it} = \gamma_1 y_{i,t-1} + \ldots + \gamma_p y_{i,t-p} + x_{it}' \beta + \alpha_i + \epsilon_{it}$$

3 channels of over-time correlation in y_i : true state dependence (directly $y_{i,t-1} \rightarrow y_{i,t}$), observed heterogeneity (directly through covariates $x_{i,t-1} \rightarrow x_{i,t} \rightarrow y_{i,t}$, or unobserved heterogeneity indirectly through α_i .

The within estimator (mean difference FE) is inconsistent with lags, as $y_{it} - \bar{y_i}$ is correlated with $\epsilon_{it} - \bar{\epsilon_i}$.

IV estimation using lags is also inconsistent, as $y_{i,t-s}$ is correlated with $\bar{\epsilon_i}$, and thus $\epsilon_{it}-\bar{\epsilon_i}.$

While first difference estimation will be inconsistent, using appropriate lags of y_{it} as instruments in FD estimation leads to consistent estimates.

$\Delta y_{it} = \gamma_1 \Delta y_{i,t-1} + \ldots + \gamma_p \Delta y_{i,t-p} + \Delta x_{it}' \beta + \Delta \epsilon_{it}$

 $\Delta y_{i,t-1}$ is correlated with $\Delta \epsilon_{i,t}$, but $y_{i,t-s}$ is not $\forall s > 2$. Anderson and Hsiao (1981) proposed using the second lag, while Arellano and Bond (1991) showed that efficiency is increased by using more lags as instruments, and that consistency holds under the assumption of **no serial correlation** in ϵ .

Regarding independent variables, you distinguish three categories. Strictly exogenous covariates (no problem), weakly exogenous covariates (correlated with past, but not with contemporaneous and future values of ϵ_{it}) and temporarily endogenous covariates (correlated with past and contemporaneous, but not future error terms).

You instrument accordingly with past values, and can also include external instruments.

OLS estimates in short and broad panels will be upward biased due to correlation of the lagged coefficient with the error term.

Fixed effect estimate for laged covariate will be downward biased by size 1/T ("Nickell bias")

Anderson Hsiao denotes a first-difference model, but instrumentalizes the first difference with 2- and 3-period lag differences.

```
regress n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, cluster(id)
estimates store OLS
xtreg n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, fe cluster(id)
estimates store FE
ivregress 2sls D.n (D.nL1 = nL2) D.(nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr1979 yr1
estimates store ahsiao1
```

esttab OLS FE esttab ahsiao1

Anderson-Hsiao: Results 1

esttab ahsiao1

	(1) D.n
D.nL1	2.308 (1.17)
D.nL2	-0.224 (-1.25)
D.w	-0.810** (-3.10)
D.wL1	1.422 (1.21)
D.k	0.253 (1.75)
D.kL1	-0.552 (-0.90)

D.kL2	-0.213 (-0.89)
D.ys	0.991* (2.14)
D.ysL1	-1.938 (-1.35)
D.ysL2	0.487 (0.96)

Anderson-Hsiao: Results 3

D.yr1979	0.0467
•	(1.04)
D.yr1980	0.0761
	(1.22)
D.yr1981	0.0226
	(0.41)
D.yr1982	0.0128
	(0.23)
D.yr1983	0.00991
	(0.22)
	0.0450
_cons	0.0159
	(0.58)
N	611
N 	
t statistics	in parentheses
	p<0.01, *** p<0.001
P.0.00,	p.0.01, p.0.001

In dynamic models which you estimate using FE, note the difference between mean differencing $x_{it} - \bar{x_i}$ and **first differencing $x_{it} - x_{i(t-1)}$.

Remember: when you include serially correlated errors and/or lagged dependent (autoregressive) variables, OLS estimation of an FE model is **inconsistent**.

Arellano-Bond estimation uses a sufficient number of lags as instruments for dependent variables, which is often more efficient than OLS estimation.

You just made the step to dynamic panel modeling.

$$y_{it} = \gamma_1 y_{i(t-1)} + \ldots + \gamma_p y_{i(t-p)} + x_{it}' \beta + \alpha_i + \epsilon_{it}$$

Note: Both within-estimation and lag instrumentalization will be inconsistent for correlation between mean differences $y_{it} - \bar{y_i}$ or lags $y_{i(t-p)}$ and $\epsilon_{it} - \bar{\epsilon_i}$. For the FD estimation, assume that ϵ_{it} is **serially uncorrelated.

$$\Delta y_{it} = \gamma_1 \Delta y_{i(t-1)} + \ldots + \gamma_{p-1} \Delta y_{i(t-p)} + \Delta x'_{it} \beta + \Delta \epsilon_{it}$$

You can instrument for $\Delta y_{i(t-1)}$ using enough lags $y_{i(t-2),\dots,y_{i(t-s)}}$, and Δx_{it} by x_{it} themselves, if x_{it} are exogenous. If x_{it} are not exogenous, they can be instrumented by enough lags of themselves.

Arellano Bond instrumentalization in STATA

```
. xtabond lwage, lags(2) vce(robust)
```

Arellano-Bond d Group variable: Time variable:	nation		f obs = f groups =	,		
	-			Obs per g	group:	
					min =	4
					avg =	4
					max =	4
Number of instruments = 15 Wald chi2(2) = 1253.						1253.03
				Prob > ch	ni2 =	0.0000
One-step result	58	(Std. Err.	adjusted	for cluster	ing on id)
		Robust				
lwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
 lwage						
L1.	.5707517	.0333941	17.09	0.000	.5053005	.6362029
L2.	.2675649	.0242641	11.03	0.000	.2200082	.3151216
I						
_cons	1.203588	.164496	7.32	0.000	.8811814	1.525994
Instruments for differenced equation						