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Recapitulation

I Dealing with Endogeneity: Instrumental Variables (IV)
I Static Panel Data
I Instrumental Variables in Dynamic Panel Data: Anderson-Hsiao, Arellano-Bond,

Arellano-Bover
I Seemingly Unrelated Regression (SUR)
I Auto-Regressive Distributed Lag (ARDL) and Error Correction Modeling (ECM)
I Stationarity
I Panel Stationarity



Vector Autoregression

[
yt
zt

]
=

[
b11 b12
b21 b22

] [
yt−1
zt−1

]
+

[
ε1,t
ε2,t

]
(1)

yt = b11yt−1 + b12zt−1 + ε1,t

zt = b21yt−1 + b22zt−1 + ε2,t

I Captures mutual dependencies between time series
I Intuitive Forecasting on all variables (ARDL/DL only allows forecasts for yi,t)
I Takes account of the usual endogeneity between economic processes
I No simultaneity bias because only lags of the “other” variable are included



VAR: Assumptions

I yt and zt are dynamically related, but not contemporaneously related.
I Error terms ε1,t and ε2,t are contemporaneously uncorrelated
I yt and zt are stationary

⇒ Estimation by OLS is efficient, consistent, and SUR estimation does not improve
efficiency. Standard Errors and Covariances can be estimated in standard form.
AIC/BIC are appropriate for lag selection.



VAR with exogenous variables

Adopt Lütkepohl notation, because it underlies the corresponding STATA package
(makes it easier to understand help files etc.)

yt = AYt−1 + B0xt + ut (2)

where yt the vector of endogenous variables, A the matrix of AR coefficients, B0 the
matrix of exogenous coefficients, xt the vector of exogenous covariates and ut a vector
of white noise disturbances (“innovations”).

Intercepts are included in xt .



VAR: Lütkepohl

Figure 1: Helmut Lütkepohl: “I see that you have not adopted full matrix notation yet.”



VAR: Advanced Lütkepohl Notation

Y = BZ + U (3)

Y = (y1, ..., yt) Y is K × T
B = (A,B0) B is K × (Kp + M)

Z =
[
Y0 ... YT−1
x1 ... xT

]
Z is (Kp + M)× T

U = (u1, ..., uT ) U is K × T

In STATA, this model is estimated using iterative seemingly unrelated regressions
(SUR).



Lag Selection for VAR

As for single equation auto-regressions, a variety of goodness of fit criteria can be
calculated for VAR.

I Akaike’s Final Prediction Error (FPE): the determinant of the average squared
prediction error matrix, normalized by ((1 + m/N)/(1−m/N))K (m is the
average number of coefficients between all models, K is the number of equations).

I Akaike Information Criterion (AIC): −2 LL
T + 2tP

T where LL is the log-likelihood of
the model, and tP is the total number of parameters in the evaluated model.

I Schwartz’ Bayesian Information Criterion (BIC): −2 LL
T + ln(T )

T tP
I Hannan-Quin Information Criterion (HQIC): −2 LL

T + 2ln[ln(T )]
T tP

The corresponding STATA command is varsoc, it can be used pre- and
postestimation.



Multivariate Impulse Response Function

Impulse Response Functions (IRF) estimate how a time series reacts to a disturbance
in the error terms.

Suppose that the estimated error structure ε is related to an underlying structural
shock vector ut .

εt = Aut (4)
E(ut , u′t) = I

A is related to the error covariance matrix Σ:

Σ = E [εtε′t ]
= E(Autu′tA′)
= AE [utu′t ]A′

= AA′

Because Σ̂ can be estimated in the regression (e.g. via VAR), Â can be retrieved.

In STATA, you can create post-estimation IRFs using irf create and irf graph.



Granger Causality

Granger Causality is not causality. Rather it measures which event happens first: zt is
said to “Granger cause” yt if (zt−1, ..., zt−p) contains information that helps predict yt
better than only (yt−1, ..., yt−p) does.

A simple way of testing Granger Causality is to compare the tests for joint
insignificance with and without (zt−1, ..., zt−p) in predicting yt . The corresponding
STATA command is vargranger.

Figure 2: Clive Granger: However, several writers stated that “of course, this is not real causality,
it is only Granger causality.”



Vector Error Correction

Let xt and yt be two first difference stationary processes, i.e. ∆y and ∆x are
covariance stationary.

According to Granger and Newbold (1974), OLS regression of y on x provides
spurious results, i.e. t-tests suggest significance of the coefficients where there is none
in the data generating process. Phillips (1986) shows this is due to the asymptotic
OLS properties not holding for first difference stationary processes.

If yt and xt cointegrate, a regression of ∆yt on ∆xt is also misspecified.

Remember cointegration:

I xt , yt are first difference stationary
I et = yt − α− βxt is covariance stationary



Engle-Granger VECM: Intuition

Re-Define the relationship between yt and xt as:

yt + βxt = εt εt = εt−1 + ξt (5)
yt + αxt = vt vt = ρvt−1 + ζt |ρ| < 1 (6)

Here ξt and ζt are i.i.d. but mutually correlated processes responsible for the
co-integration. εt is I(1), so consequently, so must be yt and xt .

Define δ = (1− ρ)/(α− β) and zt = yt + αxt .

∆yt = βδzt−1 + η1,t (7)
∆xt = −δzt−1 + η2,t (8)

In zt = 0, yt and xt are in equilibrium, and coefficients on zt−1 show how yt and xt
react to deviations from equilibrium.



Engle-Granger: Nobel Prize Winners 2002

Figure 3: Engle and Granger: Winning the Nobel Medal in 2003 for being really careful about
which relationships they call “causal” or spurious.



Engle-Granger VECM: General Case

Any VAR can be written and estimated as a VECM.

yt = vt + A1yt−1 + A2yt−2 + ...+ Apyt−p + εt (9)

∆yt = vt + Πyt−1 +
p−1∑
i=1

Γi∆yt−i + εt (10)

One last re-writing for Johansen maximum likelihood estimation:

∆yt = αβ′yt−1 +
p−1∑
i=1

Γi∆yt−i + v + δt + εt (11)

The important STATA commands are varsoc for lag selection, vecrank for the
number of cointegrating equations and vec for the estimation.


