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Recapitulation

▶ OLS and GLS
▶ Discrete Choice Modeling: LOGIT, PROBIT, TOBIT and Heckman’s Selection

Model
▶ Panel Data
▶ Instrumental Variable Regression
▶ ARDL Modeling
▶ Anderson-Hsiao, Arellano-Bond, Arellano-Bover/Blundell-Bond

instrumentalization



Seemingly Unrelated Regressions

▶ One has a number of individual regressions, with different dependent and
independent variables.

▶ However, the relationships captured in these regressions are correlated with each
other.

▶ This correlation will materialize in the error terms.
▶ Estimating the system of regressions in a feasible generalized linear regression

(fGLS), using the different variance-covariance matrix is more efficient than using
stacked OLS.

▶ If one wanted to use the independent variables from some regression as the
dependent variable in another, simultaneous regresion modeling is the
appropriate generalization.



SUR 2

▶ The most intuitive simple example: 𝑖 ∈ 𝑁 individuals, 𝑡 ∈ 𝑇 periods, 𝑘 ∈ 𝐾
covariates

▶ Actually, the covariates do not have to be the same, however, it is illustrative
▶ using SUR modeling makes sense if there is (a) a reasonable number of time

periods and (b) the researcher believes the coefficients vary between individuals,
and this difference matters.

There is 𝑁 regressions

𝑦𝑖𝑡 = 𝑋′
𝑖𝑡 𝛽𝑖+𝜖𝑖𝑡, 𝑖 = 1, ..., 𝑁

𝑇 × 1 = 𝑇 × 𝐾 𝐾 × 1 𝑇 × 1

Gauss-Markov conditions are in general satisified, especially:

𝐸(𝜖𝑖 ∣ 𝑋𝑖) = 0
𝐸(𝜖𝑖𝜖′

𝑖 ∣ 𝑋) = 𝜎2𝐼𝑖

But:
𝐸(𝜖𝑖𝑟𝜖𝑖𝑠) = 0 ∀𝑟 ≠ 𝑠
𝐸(𝜖𝑖𝑡𝜖𝑗𝑡) = 𝜔𝑖𝑗 ≠ 0 for some 𝑖, 𝑗



SUR 3
To understand the GLS method, one stacks the equations in a matrix of matrices.

Figure 1: Stacked Regressions in Matrix notation



SUR 4

▶ Remember that 𝐸(𝜖𝑖𝑡𝜖𝑗𝑡 ∣ 𝑋) = 𝜔𝑖𝑗 and define a 𝑁 × 𝑁 matrix Σ = 𝜔𝑖𝑗.
▶ The most popular estimation method is a 2 step GLS.
▶ In Step 1, run all 𝑁 regressions individually. Use the residuals to estimate Σ̂:

�̂�𝑖𝑗 = 1
𝑇 𝜖′

𝑖𝜖𝑗
▶ In Step 2 run a GLS regression with a variance matrix Ω̂ = Σ̂ ⊗ 𝐼𝑇
▶ ̂𝛽𝐺𝐿𝑆 = (𝑋′(Σ̂−1 ⊗ 𝐼𝑇 )𝑋)−1𝑋′(Σ̂−1 ⊗ 𝐼𝑇 )𝑦
▶ Alternatively, SUR can be estimated using maximum likelihood or iterative GLS.
▶ SUR is equivalent to OLS if Σ is diagonal (there is no covariance between the

error terms).
▶ When each equation has the same covariates, the estimators are numerically

equivalent to OLS.



SUR 5: Breusch-Pagan Test for Independence of equations

Breusch and Pagan (1980) present a Lagrange Multiplier test for independence of the
regression.

For N observations in M equations, 𝑟𝑚,𝑙 denotes the estimated correlation between
equation residuals.

𝜆 = 𝑁
𝑀

∑
𝑚=1

𝑚−1
∑
𝑙=1

𝑟2𝑚𝑙

The test staistic is 𝜒2 distributed with 𝑀(𝑀−1
2 degrees of freedom.

On a sidenote, the 𝑅2 can be used to compare the explanatory power gain between
nested models, but is in general not well-defined for GLS.



Slope heterogeneity

(Pesaran 2015: Chapter 29.4.2)

▶ With sufficiently large T (second dimension of the panel, e.g. time periods),
heterogeneous slopes can be measured for each individual.

▶ Sometimes the differential between slopes is the key information in a dataset,
e.g. when analyzing wage differentials, international power relations, effects of
political frameworks.

▶ At the same time, slope heterogeneity can be designed such that common
features are not neglected.

▶ Analysis with stationary dependent and independent variables needs to be
assumed for now.

▶ Most general (“descriptive”) formulation: 𝑦𝑖𝑡 = 𝑥′
𝑖𝑡𝛽𝑖𝑡 + 𝑢𝑖𝑡.



Slope heterogeneity 2

One may assume that 𝛽𝑖𝑡 depends on a common value 𝛽 as well as a random variable
𝜂𝑖𝑡, drawn from a distribution whose parameters do not vary over N and T.

𝛽𝑖𝑡 = 𝛽 + 𝜂𝑖𝑡
𝐸(𝜂𝑖) = 0, 𝐸(𝜂𝑖𝑥′

𝑖𝑡) = 0
𝐸(𝜂𝑖𝜂𝑖) = Ω𝜂, 𝐸(𝜂𝑖𝜂𝑗) = 0 ∀𝑖 ≠ 𝑗

Hsiao’s example is most intuitive: 𝛽𝑖𝑡 = 𝛽 + 𝜂𝑖 + 𝜆𝑡.



Heterogenous Slopes in STATA: Mean Groups

Markus Eberhardt 2012: “Estimating panel time-series models with heterogeneous
slopes.”

𝑦𝑖𝑡 = 𝛽𝑖𝑥𝑖𝑡 + 𝑢𝑖𝑡
𝑢𝑖𝑡 = 𝛼1𝑖 + 𝜆𝑖𝑓𝑡 + 𝜖𝑖𝑡
𝑥𝑖𝑡 = 𝛼2𝑖 + 𝜆𝑖𝑓𝑡 + 𝛾𝑖𝑔𝑡 + 𝑒𝑖𝑡

Only 𝑦 and 𝑥 are observed, all factors in 𝑢 are unobserved, and 𝜖𝑖𝑡 is the error term.

The principle idea is to estimate N OLS regressions, the find a weighted average of the
coefficients.

https://journals.sagepub.com/doi/pdf/10.1177/1536867X1201200105
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1201200105


Heterogenous Slopes in STATA: Mean Groups 2

▶ Pesaran and Smith 1995: No cross-sectional dependency, but common linear trend
▶ Pesaran 2006: Cross-Sectional Dependencies and Unobservables in 𝑥𝑖𝑡

(e.g. productivity shocks). Cross-Section Averaged Parameters cannot be
interpreted meaningfully, but allow for consistent estimation of coefficients for
observed variables.

▶ Eberhardt and Teal: 3 Step procedure, allows for estimation of coefficients for
unobservables (important for production functions, total factor productivity)



ARDL with Heterogenous Slopes 1

(https://www.stata.com/meeting/switzerland18/slides/switzerland18_Ditzen.pdf)

Reminder of ARDL setup to test for long-run relationship, including Error Correction
Model for short-run adjustment processes.

▶ Level-ARDL

𝑦𝑡 = 𝛼0 + 𝛼1𝑡 +
𝑝

∑
𝑖=1

𝜙𝑖𝑦𝑡−𝑖 +
𝑞

∑
𝑗=0

𝛽′
𝑗𝑥𝑡−𝑗 + 𝑣𝑡

▶ Conditional ECM:

Δ𝑦𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2(𝑦𝑡−1 − 𝜃𝑥𝑡) +
𝑝−1
∑
𝑖=1

𝜓𝑦𝑖Δ𝑦𝑡−𝑖 +
𝑞−1
∑
𝑖=0

𝜓′
𝑥𝑖Δ𝑥𝑡−𝑖 + 𝑢𝑡

▶ 𝜃 = (∑𝑞
𝑗=0 𝛽𝑗)/𝛼2 and 𝛼2 = 1 − ∑𝑝

𝑖=1 𝜙𝑖
▶ Pesaran’s Common Correlated Effect (CCE) estimation:

𝛽𝑖 = 𝛽 + 𝑣𝑖, 𝑣𝑖 ∼ 𝐼𝐼𝐷(0, Ω𝑣) and 𝑥𝑖𝑡 = 𝛾′
𝑖𝑓𝑡 + 𝑢𝑖𝑡 where 𝑢𝑖𝑡 is allowed ot be

serially correlated, where ̂𝛽𝑀𝐺 = 1/𝑁 ∑ ̂𝛽𝑖.

https://www.stata.com/meeting/switzerland18/slides/switzerland18_Ditzen.pdf


ARDL with Heterogenous Slopes 2

Setup with individual slopes, a common factor and a heterogenous “factor loading”,
including mean group estimation.

𝑦𝑖𝑡 = 𝜆𝑖𝑦𝑖𝑡−1 + 𝛽𝑖𝑥𝑖𝑡 + 𝑢𝑖𝑡
𝑢𝑖𝑡 = 𝛾′

𝑖𝑓𝑡 + 𝜀𝑖𝑡

̂𝛽𝑀𝐺 = 1
𝑁 ∑ 𝛽𝑖, �̂�𝑀𝐺 = 1

𝑁 ∑ 𝜆𝑖

Note: For consistent estimation of both ̂𝛽𝑖 and ̂𝛽𝑀𝐺, large 𝑁 and 𝑇 are necessary. If
the common unobserved factor 𝑓𝑡 is left out, the omitted variable bias can be
substantial.

Individual fixed effects can be added, but are not the crucial point in the methodology.

𝛽𝑖 = 𝛽 + 𝑣𝑖, 𝑣𝑖 ∼ 𝐼𝐼𝐷(0, Ω𝛽)
𝜆𝑖 = 𝜆 + 𝜁𝑖, 𝜁𝑖 ∼ 𝐼𝐼𝐷(0, Ω𝜁)



ARDL with Heterogenous Slope 3

Formulation of a special error correction model (Dynamic Common Correlated
Effects Estimation):

Δ𝑦𝑖𝑡 = 𝜙𝑖(𝑦𝑖𝑡−1 − 𝜃𝑖𝑥𝑖𝑡) −
𝑝

∑
𝑗=1

𝜆𝑗𝑖Δ𝑗𝑦𝑖𝑡−𝑗 −
𝑞

∑
𝑗=0

𝛽′
𝑗𝑖Δ𝑗𝑥𝑖𝑡 +

𝑟
∑
𝑗=0

𝛾𝑖𝑗 ̄𝑧𝑖𝑡 + 𝑢𝑖𝑡

Where

▶ 𝜃 the long-run coefficients from the OLS level regression.
▶ Δ𝑗 the lag-length denomination, i.e. Δ3𝑥𝑖𝑡 = 𝑥𝑖𝑡 − 𝑥𝑖𝑡−3.
▶ ̂𝜙𝑖 = (1 − ∑𝑝

𝑗=1 �̂�𝑖𝑗).
▶ ̄𝑧𝑡 = ( ̄𝑦𝑡, ̄𝑥𝑡), the cross-sectional averages.

You want to install the moremata, xtmg and xtdcce2 packages from SSC.


