Lab 1: Ordinary Least Squares
 Econometrics Beyond Ordinary Least Squares

Patrick Mokre

WS 2020/2021

OLS: Intuition

profits $=$ prices * output - wages * labor force - interest * fixed capital.
You can observe gross operating surplus GOS (profits), gross output GO (prices * unit output), total fixed assets (fixed capital) and total employee compensation (wages * labor force) from national accounts.
$\mathbf{G O S}=(\mathbf{G O}-\mathbf{T C E})-$ interest rate $*$ FA
Now the interest rate is the solution to one equation with one unknown.

$$
\begin{equation*}
i=\frac{G O S-G O+T C E}{F A} \tag{1}
\end{equation*}
$$

Call GOS the dependent variable, (GO - TCE) an intercept, FA the covariate and i a coefficient.

More than one, otherwise identical, observation \Rightarrow average interest rate on fixed capital.

OLS: Mathematics

Let \tilde{y} be a weighted linear combination of some factors x_{2}, \ldots, x_{k} (omit x_{1} for a constant intercept).
Choose variable weigths $\tilde{\beta}_{1}, \ldots \tilde{\beta}_{k}$.

$$
\begin{equation*}
\tilde{y}=\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{2}+\ldots+\tilde{\beta}_{k} x_{k} \tag{2}
\end{equation*}
$$

Deviation between y and \tilde{y} :

$$
\begin{equation*}
y-\tilde{y}=y-\left[\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{2}+\ldots+\tilde{\beta}_{k} x_{k}\right] \tag{3}
\end{equation*}
$$

Vector Notation

Vector notation allows to express some amount of 1×1 values (eg. numbers) under one name.

Vectors have a dimensionality of rows \times columns. One of the two is supposed to be 1 .

Transposing a row vector makes it a column vector and vice versa.

$$
\left[\begin{array}{lll}
z_{1} & z_{2} & z_{3}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]
$$

OLS: Squared Loss Function

Deviation with vector notation, x and $\tilde{\beta}$ are $K \times 1$ vectors.

$$
\begin{equation*}
y-\tilde{y}=y-x^{\prime} \tilde{\beta} \tag{4}
\end{equation*}
$$

Introduce N combinations of y and x and denote each with index $i \in N$.

$$
\begin{equation*}
\tilde{y}_{i}=\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{i, 2}+\ldots+\tilde{\beta}_{k} x_{i, k} \tag{5}
\end{equation*}
$$

Squared Loss function:

$$
\begin{equation*}
S(\tilde{\beta})=\sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \tilde{\beta}\right)^{2} \tag{6}
\end{equation*}
$$

OLS: Minimization Problem

Find the global minimum of $S(\tilde{\beta})$ to determine the best-fit coefficient vector $\hat{\beta}$. Minimize squared loss function \Rightarrow Ordinary Least Squares.

$$
\begin{align*}
\frac{\partial S(\tilde{\beta})}{\partial \tilde{\beta}} & =-2 \sum x_{i}\left(y_{i}-x_{i}^{\prime} \tilde{\beta}\right)=0 \tag{7}\\
\left(\sum x_{i} x_{i}^{\prime}\right) \tilde{\beta} & =\left(\sum x_{i} y_{i}\right) \tag{8}\\
\hat{\beta} & =\frac{\left(\sum x_{i} y_{i}\right)}{\left(\sum x_{i} x_{i}^{\prime}\right)}=\left(\sum x_{i} x_{i}^{\prime}\right)^{-1}\left(\sum x_{i} y_{i}\right) \tag{9}
\end{align*}
$$

Then the best-fit estimation for \tilde{y} is given by vectors x and $\hat{\beta}$.

$$
\begin{equation*}
\hat{y}=x_{i}^{\prime} \hat{\beta} \tag{10}
\end{equation*}
$$

Matrix Notation

A matrix Z can be imagined as a stacking M row vectors with dimension $1 \times N$: A $M \times N$ matrix

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{lll}
z_{1,1} & z_{1,2} & z_{1,3}
\end{array}\right] \\
& z_{2}=\left[\begin{array}{lll}
z_{2,1} & z_{2,2} & z_{2,3}
\end{array}\right] \\
& Z=\left[\begin{array}{lll}
z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,1} & z_{2,2} & z_{2,3}
\end{array}\right]
\end{aligned}
$$

OLS: Matrix Result

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{11}
\end{equation*}
$$

To derive $\hat{\beta}$, on must invert $X . X$ must be invertible. X is invertible if no column is a linear combination of another, "no multi-collinearity".
\Rightarrow Do not include the same covariates twice.

OLS: Residual

Residual $e_{i}=y_{i}-\hat{y}_{i}=y_{i}-x_{i}^{\prime} \hat{\beta}$.

$$
\begin{equation*}
S(\hat{\beta})=\sum_{i=1}^{N} e_{i}^{2} \tag{12}
\end{equation*}
$$

The $N \times 1$ vector e and $N \times K$ vector \times are orthogonal.

$$
\begin{equation*}
\sum x_{i}\left(y_{i}-x_{i}^{\prime} \hat{\beta}\right)=\sum x_{i} e_{i}=0 \tag{13}
\end{equation*}
$$

This means, the average residual is zero. If it wasn't, the approximation would not be ideal.

This also means that the linear approximation for y holds in the average.

$$
\begin{equation*}
\bar{y}=\bar{x}^{\prime} \hat{\beta} \tag{14}
\end{equation*}
$$

OLS: Simple Linear Regression

$$
\begin{align*}
\tilde{\beta} & =\tilde{\beta}_{1}, \tilde{\beta}_{2} \tag{15}\\
y_{i} & =\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{i, 2} \tag{16}
\end{align*}
$$

Figure 1: Verbeek, 2004, Figure 2.1: "Simple linear regression: fitted line and observation points"

$$
\begin{equation*}
S\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right)=\sum_{i=1}^{N}\left(y_{i}-\tilde{\beta}_{1}-x_{i}^{\prime} \tilde{\beta}_{2}\right)^{2} \tag{17}
\end{equation*}
$$

OLS: Simple Linear Regression, Analytical Solution

$$
\begin{align*}
S\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right) & =\sum_{i=1}^{N}\left(y_{i}-\tilde{\beta}_{1}-x_{i}^{\prime} \tilde{\beta}_{2}\right)^{2} \tag{18}\\
\frac{\partial S}{\partial \beta_{1}} & =-2 \sum\left(y_{i}-\tilde{\beta}_{1}-\tilde{\beta}_{2} x_{i}\right)^{2}=0 \tag{19}\\
\frac{\partial S}{\partial \beta_{2}} & =-2 \sum x_{i}\left(y_{i}-\tilde{\beta}_{1}-\tilde{\beta}_{2} x_{i}\right)^{2}=0 \tag{20}
\end{align*}
$$

Analytical Solution for estimators:

$$
\begin{align*}
\hat{\beta}_{1} & =\frac{1}{N} \sum y_{i}-\hat{\beta_{2}} \frac{1}{N} \sum x_{i}=\bar{y}-\hat{\beta_{2}} x_{i} \tag{21}\\
\sum x_{i} y_{i} & -\hat{\beta_{1}} \sum x_{i}-\hat{\beta_{2}}\left(\sum x_{i}^{2}\right)=0 \tag{22}\\
\sum x_{i} y_{i} & -N \bar{x} \bar{y}-\hat{\beta_{2}}\left(\sum x_{i}^{2}-N \bar{x}^{2}\right)=0 \tag{23}\\
\hat{\beta}_{2} & =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \tag{24}
\end{align*}
$$

OLS: Practical Example

i	x	y
1	1.33	1.99
2	1.86	2.79
3	2.86	4.30
4	4.54	6.81
5	1.01	1.51

Please:

- Produce a plot with x on the x-axis and y on the y-axis
- Calculate $\bar{y}, \bar{x}, \hat{\beta}_{1}$ and $\hat{\beta}_{2}$.
- Plot the regression line and provide graphical interpretations of $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$.
- Calculate the residual vector e.

OLS: Statistics

An algebraic model $\tilde{y}_{i}=\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{i, 2}+\ldots+\tilde{\beta}_{k} x_{i, k}$ is valid for and only for $i \in N$. A statistical model is the attempt to describe a relationship that holds for all members of a well-defined set, eg. all German households.

$$
\begin{align*}
y_{i} & =\beta_{1}+\beta_{2} x_{i, 2}+\ldots+\beta_{k} x_{i, k}+\epsilon_{i} \tag{25}\\
y_{i} & =x_{i}^{\prime} \beta+\epsilon_{i} \tag{26}\\
y & =X \beta+\epsilon \tag{27}
\end{align*}
$$

The main difference is the unobserved error term ϵ_{i}.
Are such models meaningful?

OLS: Error Term Assumptions

Assume exogenous covariates: $E\left(y_{i} \mid x_{i}\right)=x_{i}^{\prime} \beta \Rightarrow E\left(\epsilon_{i} \mid x_{i}\right)=0$.
Now, β_{k} has a meaning: It is the marginal ceteris paribus effect of a change in $x_{i, k}$ on y_{i}, or more generally the marginal effect of a change in $\overline{x_{k}}$ on \bar{y}.
$\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ is called the ordinary least squares estimator for β.

OLS: Statistical Example

i	x	y
1	1.33	2.12
2	1.86	2.83
3	2.86	4.14
4	4.54	6.72
5	1.01	1.48

- Produce a plot with x on the x-axis and y on the y-axis
- Calculate $\bar{y}, \bar{x}, \hat{\beta}_{1}$ and $\hat{\beta}_{2}$.
- Plot the regression line and provide graphical interpretations of $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$.
- Calculate the residual vector e, mean residual \bar{e} and residual variance $\operatorname{Var}(e)$.

OLS: Gauss-Markov Assumptions

The statistical model retains its meaning by assuming some properties of the error term. Gauss and Markov did that for us.

$$
\text { Linear relationship: } y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}(\mathrm{GM} 0)
$$

Errors are zero on average: $E\left(\epsilon_{i}\right)=0 \forall i \in N$ (GM1) Independence: $E\left(\epsilon_{i} \mid x_{i}\right)=E\left(\epsilon_{i}\right)=0 \forall i \in N(G M 2)$

Homoskedasticity: $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2} \forall i \in N(G M 3)$
No Autocorrelation: $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0 \forall i \neq j \in N(G M 4)$

OLS: Unbiasedness

An estimator is unbiased if the expected value of the estimator is the "true" estimator: $E(\hat{\beta})=\beta$.

$$
\begin{array}{r}
E[\hat{\beta}]=E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} y\right]= \\
E\left[\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon\right]= \\
\beta+E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon\right]=\beta \tag{28}
\end{array}
$$

Because $E\left[\epsilon_{i} \mid x_{i}\right)=E\left[\epsilon_{i}\right]$ and $E\left[\epsilon_{i}\right]=0$, ie. Gauss-Markov assumptions 1 and 2.

OLS: Efficiency

An estimator is efficient if it has the smallest expected variance within its class of estimators $\left(\operatorname{Var}(\hat{\beta}) \leq \operatorname{Var}\left(\beta^{*}\right) \forall \beta^{*} \neq \hat{\beta}\right)$.

Remember: The variance is the average squared deviation from the mean $\operatorname{Var}(\beta)=E\left[(\hat{\beta}-\beta)^{2}\right]$.

$$
\begin{equation*}
V(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(\sum_{i=1}^{N}\left(x_{i} x_{i}^{\prime}\right)\right)^{-1} \tag{29}
\end{equation*}
$$

Under Gauss-Markov Conditions 1 through $4 \hat{\beta}_{O L S}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ is the best unbiased linear estimator (BLUE).

OLS: Economics

OLS estimates the marginal impact of a ceteris paribus shift in the mean covariate \bar{x} on the mean dependent variable \bar{y}.

Linearization, eg. by logarithm, is a popular tool in mainstream economics to apply OLS.

$$
\begin{aligned}
Y & \left.=K^{\alpha} L^{\prime} \beta\right) \\
\log (Y) & =\alpha \log (K)+\beta \log (L) \\
\log \left(Y_{i}\right) & =\alpha \log \left(K_{i}\right)+\beta \log \left(L_{i}\right)+\epsilon_{i}
\end{aligned}
$$

OLS: Goodness of Fit $\left(R^{2}\right)$

How much of the data variance is explained by the estimated model? R^{2} estiamtes the ratio of explained variation in total variation, or 1 minus the sum of squared residuals (SSR) over the sum of squared totals (SST).

$$
\begin{equation*}
R^{2}=\frac{\hat{V}[\hat{y}]}{\hat{V}[y]}=\frac{1 /(N)-1 \sum(\hat{y}-\bar{y})^{2}}{1 /(N-1) \sum\left(y_{i}-\bar{y}\right)^{2}} \tag{31}
\end{equation*}
$$

If the model contains an intercept:

$$
\begin{align*}
y_{i} & =\hat{y}_{i}+e_{i} \tag{32}\\
\hat{V}\left(y_{i}\right) & =\hat{V}\left(y_{i}\right)+\hat{V}\left(e_{i}\right) \tag{33}\\
R^{2} & =1-\frac{\hat{V}\left(e_{i}\right)}{\hat{V}\left(y_{i}\right)}=1-\frac{1 /(N-1) \sum e_{i}^{2}}{1 /(N-1) \sum\left(y_{i}-\bar{y}\right)^{2}} \tag{34}
\end{align*}
$$

The adjusted R^{2} punishes including too many variables by replacing $1 /(N-1)$ by $1 /(N-K)$.

$$
\begin{equation*}
\tilde{R}^{2}=1-\frac{1 /(N-K) \sum e_{i}^{2}}{1 /(N-K) \sum\left(y_{i}-\bar{y}\right)^{2}} \tag{35}
\end{equation*}
$$

OLS: Significance

Significance: Was it actually necessary to include that covariate \Rightarrow Is the corresponding coefficient different from zero?
Compare a test statistic with known critical values (for coefficient estimate $\hat{\beta}$ and H 0 value β_{k}^{0}). Often, β_{k}^{0} will be zero.

$$
\begin{equation*}
t_{k}=\frac{\hat{\beta}_{k}-\beta_{k}^{0}}{s . e .\left(\hat{\beta}_{k}\right)} \tag{36}
\end{equation*}
$$

If ϵ is Gaussian Normal distributed with mean β and variance $\sigma^{2}\left(X^{\prime} X\right)^{-1}$, and the unknown σ is estimated by s, the unbiased estimator s^{2} is χ^{2}-distributed with $N-K$ degrees of freedom.

Then t_{k} is the ratio of a Gaussian Normal distribution over the square root of a χ^{2} distributed variable, which is Student $-t$ distributed with $N-K$ degrees of freedom.

OLS: Significance Testing Distributions

Wikipedia: Gaussian Normal, χ^{2} and Student's t-distributions.
Note that a Student' t distribution with large degrees of freedom (many observations, few covariates) closely resembles a Gaussian Normal.

OLS: Significance Probabilities

Significance testing aks the probability that a given estimate $\hat{\beta}$ is the same as some HO value β^{0}.

This is equivalent to asking if the corresponding test statistic is higher than some critical value for a given probability α (e.g. for $\alpha=0.05$).

$$
\begin{equation*}
t_{N-K, \alpha / 2} s . t . P\left(\left|t_{k}\right|>t_{N-K, \alpha / 2}\right)=\alpha \tag{37}
\end{equation*}
$$

For example, for a high $N-K$, the Student's t distribution resembles a Standard Gaussian Normal distribution, and we reject the hypothesis $\hat{\beta}_{k}=\beta_{k}^{0}$ if $t_{k}>1.64$.

Example: Gender Wage Gap Summary Statistics

```
## `summarise()` ungrouping output (override with `.groups` argument)
```

Gender	Mean Log Wage
F	6.255308
M	6.729774

Example: Gender Wage Gap Regression

$$
\begin{align*}
g \in G & =(F, M) \\
w_{g} & =f(B P, D C) \tag{38}\\
B P & =f(O S, A C) \tag{39}\\
w_{i} & \approx(D C+O S+A C)_{i}+A C_{i(g)}+\epsilon_{i} \tag{40}
\end{align*}
$$

Example: Gender Wage Gap Regression

```
psid <- foreign::read.dta("../data/mus08psidextract.dta")
options(scipen = 4)
lm(lwage ~ fem, data=psid) %>%
    summary()
```

\#\#
\#\# Call:
\#\# lm(formula = lwage ~ fem, data = psid)
\#\#
\#\# Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-1.71249	-0.27615	0.01429	0.25402	1.80723

\#\#
\#\# Coefficients:

\#\#
\#\# Residual standard error: 0.4365 on 4163 degrees of freedom
\#\# Multiple R-squared: 0.1056, Adjusted R-squared: 0.1054

Hotwash

- What did not work today?
- What could I have done better?
- Is there anything you wish you had done differently?

Anonymous Submissions: https://pad.riseup.net/p/ebols-fall2020

Next Lecture: Time Series

Please Read: Verbeek, 2005, Chapters 8 and 9

