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OLS: Intuition

profits = prices * output - wages * labor force - interest * fixed capital.

You can observe gross operating surplus GOS (profits), gross output GO (prices
* unit output), total fixed assets (fixed capital) and total employee compensation
(wages * labor force) from national accounts.

GOS = (GO - TCE) - interest rate * FA

Now the interest rate is the solution to one equation with one unknown.

i = GOS − GO + TCE
FA (1)

Call GOS the dependent variable, (GO - TCE) an intercept, FA the covariate
and i a coefficient.

More than one, otherwise identical, observation ⇒ average interest rate on fixed
capital.



OLS: Mathematics

Let ỹ be a weighted linear combination of some factors x2, ..., xk (omit x1 for a
constant intercept).

Choose variable weigths β̃1, ...β̃k .

ỹ = β̃1 + β̃2x2 + ...+ β̃kxk (2)

Deviation between y and ỹ :

y − ỹ = y − [β̃1 + β̃2x2 + ...+ β̃kxk ] (3)



Vector Notation

Vector notation allows to express some amount of 1× 1 values (eg. numbers)
under one name.

Vectors have a dimensionality of rows× columns. One of the two is supposed
to be 1.

Transposing a row vector makes it a column vector and vice versa.

[
z1 z2 z3

]′ =

[z1
z2
z3

]



OLS: Squared Loss Function

Deviation with vector notation, x and β̃ are K × 1 vectors.

y − ỹ = y − x ′β̃ (4)

Introduce N combinations of y and x and denote each with index i ∈ N.

ỹi = β̃1 + β̃2xi,2 + ...+ β̃kxi,k (5)

Squared Loss function:

S(β̃) =
N∑

i=1

(yi − x ′i β̃)2 (6)



OLS: Minimization Problem

Find the global minimum of S(β̃) to determine the best-fit coefficient vector β̂.

Minimize squared loss function ⇒ Ordinary Least Squares.

∂S(β̃)
∂β̃

= −2
∑

xi (yi − x ′i β̃) = 0 (7)(∑
xi x ′i
)
β̃ =

(∑
xi yi

)
(8)

β̂ =
(∑

xi yi
)(∑

xi x ′i
) =

(∑
xi x ′i
)−1 (∑

xi yi

)
(9)

Then the best-fit estimation for ỹ is given by vectors x and β̂.

ŷ = x ′i β̂ (10)



Matrix Notation

A matrix Z can be imagined as a stacking M row vectors with dimension 1× N:
A M × N matrix

z1 =
[
z1,1 z1,2 z1,3

]
z2 =

[
z2,1 z2,2 z2,3

]
Z =

[
z1,1 z1,2 z1,3
z2,1 z2,2 z2,3

]



OLS: Matrix Result

β̂ = (X ′X)−1X ′y (11)

To derive β̂, on must invert X . X must be invertible. X is invertible if no
column is a linear combination of another, “no multi-collinearity”.

⇒ Do not include the same covariates twice.



OLS: Residual

Residual ei = yi − ŷi = yi − x ′i β̂.

S(β̂) =
N∑

i=1

e2i (12)

The N × 1 vector e and N × K vector x are orthogonal.

∑
xi (yi − x ′i β̂) =

∑
xi ei = 0 (13)

This means, the average residual is zero. If it wasn’t, the approximation would
not be ideal.

This also means that the linear approximation for y holds in the average.

ȳ = x̄ ′β̂ (14)



OLS: Simple Linear Regression

β̃ = β̃1, β̃2 (15)
yi = β̃1 + β̃2xi,2 (16)

Figure 1: Verbeek, 2004, Figure 2.1: “Simple linear regression: fitted line and
observation points”

S(β̃1, β̃2) =
N∑

i=1

(yi − β̃1 − x ′i β̃2)2 (17)



OLS: Simple Linear Regression, Analytical Solution

S(β̃1, β̃2) =
N∑

i=1

(yi − β̃1 − x ′i β̃2)2 (18)

∂S
∂β1

= −2
∑

(yi − β̃1 − β̃2xi )2 = 0 (19)

∂S
∂β2

= −2
∑

xi (yi − β̃1 − β̃2xi )2 = 0 (20)

Analytical Solution for estimators:

β̂1 = 1
N
∑

yi − β̂2
1
N
∑

xi = ȳ − β̂2xi (21)∑
xi yi − β̂1

∑
xi − β̂2

(∑
x2

i

)
= 0 (22)∑

xi yi − Nx̄ȳ − β̂2
(∑

x2
i − Nx̄2

)
= 0 (23)

β̂2 =
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

(24)



OLS: Practical Example

i x y
1 1.33 1.99
2 1.86 2.79
3 2.86 4.30
4 4.54 6.81
5 1.01 1.51

Please:
I Produce a plot with x on the x-axis and y on the y-axis
I Calculate ȳ , x̄ , β̂1 and β̂2.
I Plot the regression line and provide graphical interpretations of β̂1 and β̂2.
I Calculate the residual vector e.



OLS: Statistics

An algebraic model ỹi = β̃1 + β̃2xi,2 + ...+ β̃kxi,k is valid for and only for i ∈ N.

A statistical model is the attempt to describe a relationship that holds for all
members of a well-defined set, eg. all German households.

yi = β1 + β2xi,2 + ...+ βkxi,k + εi (25)
yi = x ′i β + εi (26)
y = Xβ + ε (27)

The main difference is the unobserved error term εi .

Are such models meaningful?



OLS: Error Term Assumptions

Assume exogenous covariates: E(yi | xi ) = x ′i β ⇒ E(εi | xi ) = 0.

Now, βk has a meaning: It is the marginal ceteris paribus effect of a change in
xi,k on yi , or more generally the marginal effect of a change in x̄k on ȳ .

β̂ = (X ′X)−1X ′y is called the ordinary least squares estimator for β.



OLS: Statistical Example

i x y
1 1.33 2.12
2 1.86 2.83
3 2.86 4.14
4 4.54 6.72
5 1.01 1.48

I Produce a plot with x on the x-axis and y on the y-axis
I Calculate ȳ , x̄ , β̂1 and β̂2.
I Plot the regression line and provide graphical interpretations of β̂1 and β̂2.
I Calculate the residual vector e, mean residual ē and residual variance

Var(e).



OLS: Gauss-Markov Assumptions

The statistical model retains its meaning by assuming some properties of the
error term. Gauss and Markov did that for us.

Linear relationship: yi = x ′i β + εi (GM0)
Errors are zero on average: E(εi ) = 0∀i ∈ N (GM1)
Independence: E(εi | xi ) = E(εi ) = 0∀i ∈ N (GM2)

Homoskedasticity: Var(εi ) = σ2
ε∀i ∈ N (GM3)

No Autocorrelation: Cov(εi , εj ) = 0∀i 6= j ∈ N (GM4)



OLS: Unbiasedness

An estimator is unbiased if the expected value of the estimator is the “true”
estimator: E(β̂) = β.

E [β̂] = E [(X ′X)−1X ′y ] =
E [β + (X ′X)−1X ′ε] =

β + E [(X ′X)−1X ′ε] = β (28)

Because E [εi | xi ) = E [εi ] and E [εi ] = 0, ie. Gauss-Markov assumptions 1 and
2.



OLS: Efficiency

An estimator is efficient if it has the smallest expected variance within its class
of estimators (Var(β̂) ≤ Var(β∗)∀β∗ 6= β̂).

Remember: The variance is the average squared deviation from the mean
Var(β) = E [(β̂ − β)2].

V (β̂) = σ2(X ′X)−1 = σ2

(
N∑

i=1

(xi x ′i )

)−1
(29)

V (β̂) = E [(β̂ − β)(β̂ − β)′] = E [(X ′X)−1X ′εε′X(X ′X)−1] =
(X ′X)−1X ′(σ2IN)X(X ′X)1 = σ2(X ′X)−1 (30)

Under Gauss-Markov Conditions 1 through 4 β̂OLS = (X ′X)−1X ′y is the best
unbiased linear estimator (BLUE).



OLS: Economics

OLS estimates the marginal impact of a ceteris paribus shift in the mean
covariate x̄ on the mean dependent variable ȳ .

Linearization, eg. by logarithm, is a popular tool in mainstream economics to
apply OLS.

Y = KαL(β)
log(Y ) = αlog(K) + βlog(L)
log(Yi ) = αlog(Ki ) + βlog(Li ) + εi



OLS: Goodness of Fit (R2)

How much of the data variance is explained by the estimated model? R2

estiamtes the ratio of explained variation in total variation, or 1 minus the sum
of squared residuals (SSR) over the sum of squared totals (SST).

R2 = V̂ [ŷ ]
V̂ [y ]

=
1/(N)− 1

∑
(ŷ − ȳ)2

1/(N − 1)
∑

(yi − ȳ)2
(31)

If the model contains an intercept:

yi = ŷi + ei (32)

V̂ (yi ) = V̂ (yi ) + V̂ (ei ) (33)

R2 = 1− V̂ (ei )
V̂ (yi )

= 1−
1/(N − 1)

∑
e2i

1/(N − 1)
∑

(yi − ȳ)2
(34)

The adjusted R2 punishes including too many variables by replacing 1/(N − 1)
by 1/(N − K).

R̃2 = 1−
1/(N − K)

∑
e2i

1/(N − K)
∑

(yi − ȳ)2
(35)



OLS: Significance

Significance: Was it actually necessary to include that covariate ⇒ Is the
corresponding coefficient different from zero?

Compare a test statistic with known critical values (for coefficient estimate β̂
and H0 value β0

k). Often, β0
k will be zero.

tk = β̂k − β0
k

s.e.(β̂k )
(36)

If ε is Gaussian Normal distributed with mean β and variance σ2(X ′X )−1, and
the unknown σ is estimated by s, the unbiased estimator s2 is χ2-distributed
with N − K degrees of freedom.

Then tk is the ratio of a Gaussian Normal distribution over the square root of a
χ2 distributed variable, which is Student − t distributed with N − K degrees of
freedom.



OLS: Significance Testing Distributions

Wikipedia: Gaussian Normal, χ2 and Student’s t-distributions.

Note that a Student’ t distribution with large degrees of freedom (many
observations, few covariates) closely resembles a Gaussian Normal.



OLS: Significance Probabilities

Significance testing aks the probability that a given estimate β̂ is the same as
some H0 value β0.

This is equivalent to asking if the corresponding test statistic is higher than some
critical value for a given probability α (e.g. for α = 0.05).

tN−K ,α/2s.t.P(| tk |> tN−K ,α/2) = α (37)

For example, for a high N −K , the Student’s t distribution resembles a Standard
Gaussian Normal distribution, and we reject the hypothesis β̂k = β0

k if tk > 1.64.



Example: Gender Wage Gap Summary Statistics

## `summarise()` ungrouping output (override with `.groups` argument)

Gender Mean Log Wage
F 6.255308
M 6.729774



Example: Gender Wage Gap Regression

g ∈ G = (F ,M)
wg = f (BP,DC) (38)
BP = f (OS,AC) (39)
wi ≈ (DC + OS + AC)i + ACi(g) + εi (40)



Example: Gender Wage Gap Regression
psid <- foreign::read.dta("../data/mus08psidextract.dta")
options(scipen = 4)
lm(lwage ~ fem, data=psid) %>%

summary()

##
## Call:
## lm(formula = lwage ~ fem, data = psid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.71249 -0.27615 0.01429 0.25402 1.80723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.72977 0.00718 937.29 <2e-16 ***
## fem -0.47447 0.02140 -22.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4365 on 4163 degrees of freedom
## Multiple R-squared: 0.1056, Adjusted R-squared: 0.1054
## F-statistic: 491.7 on 1 and 4163 DF, p-value: < 2.2e-16



Hotwash

I What did not work today?
I What could I have done better?
I Is there anything you wish you had done differently?

Anonymous Submissions: https://pad.riseup.net/p/ebols-fall2020

https://pad.riseup.net/p/ebols-fall2020


Next Lecture: Time Series

Please Read: Verbeek, 2005, Chapters 8 and 9


