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Time Series

Time Series: Consecutive realizations of the same random variable Y (eg.
production output) in periods t ∈ T = (1, 2, ...,T ).

Auto-Regression (AR): Meaningful impact of past periods’ realizations on
current realization.

Yt = δ + θYt−1 + εt (1)
E [εt ] = 0∀t ∈ T ; Var [εt ] = σ2

ε∀t ∈ T ; Cov [εt , εs ] = 0∀s 6= t ∈ T ; | θ |< 1

Moving Average (MA): Past periods’ deviations from predicted values impact
current realization.

Yt = µ+ εt + α1εt−1 (2)



White Noise

εt will usually be assumed to be white noise:
I serially uncorrelated
I 0 mean
I finite variance

Figure 1: Wikipedia: “The waveform of a Gaussian white noise signal plotted on a
graph”



Autoregression 1

Yt = δ + θYt−1 + εt

Expected Value:

E [Yt ] = δ + θE [Yt−1]
E [Yt | t] = E [Yt ] = E [Yt−1] (expected value does not depend on t)

µ = E [Yt ] = δ

1− θ (3)

Define yt = Yt − µ, lose the intercept term δ.



Autoregression 2

Variance:

V [Yt ] = V [δ + θYt−1 + εt ] = V [θYt−1εt ] = θ2V [Yt−1] + V [εt ]

V [Yt ] = V [Yt−1]⇒ V [Yt ] = σ2

1− θ (4)

Covariance:

Cov(yt , yt−1) = E [yt , yt−1] = E [(θyt−1 + εt)yt−1] = θV [yt−1] = θ
σ2

1− θ2 (5)

Cov(yt , yt−k ) = θk σ2

1− θ2 (6)



Moving Averages 1

Yt = µ+ εt + αεt−1

E [Yt ] = µ (7)

Variance and Covariance:

V [Yt ] = [(εt + αεt−1)2] = E [ε2t ] + α2E [ε2t−1] = (1 + α2)σ2 (8)
Cov [Yt ,Yt−1] = E [(εt + αεt−1)(εt−1 + αεt−2] = αE [ε2t−1] = ασ2 (9)
Cov [Yt ,Yt−2] = E [(εt + αεt−1)(εt−2 + αεt−3] = 0 (10)



Relationship between AR and MA

I AR is a “long-memory” process, MA has an auto-covariance of 0 for all
distances greater than 1 period.

I AR can be written as an infinite-order MA process if | θ |< 1:

Yt = δ + θYt−1 + εt

Yt−1 = δ + θYt−2 + εt−1

⇒ Yt = µ+ θ2(Yt−2 − µ) + εt + θεt−1

⇒ Yt = θn(Yt−2 − µ) +
N−1∑
j=0

θjεt−j

lim
n→∞

Yt = µ+
∞∑
j=0

θjεt−j (11)



Autocovariance and Autocorrelation Functions (ACF)

γk = Cov [Yt ,Yt−k ] = Cov [Yt−k ,Yt ] (Autocovariance) (12)

ρk = Cov [Yt ,Yt−k ]
V [Yt ] = γk

γ0
Autocorrellation (13)

γk ∈ [−∞,∞] ; ρk ∈ [−1, 1]



Autocorrelation in AR

Figure 2: Verbeek, 2003, Figure 8.1: “First order autoregressive processes: data series
and autocorrelation functions”



Autocorrelation in MA

Figure 3: Verbeek, 2003, Figure 8.2: “First order moving average processes: data series
and autocorrelation functions”



Stationarity

Stationarity is a statistical concept describing joint distributions.
I Engineers have it easier: “Stationarity can be defined in precise

mathematical terms, but for our purpose we mean a flat looking series [. . . ]”
(NIST/SEMATECH e-Handbook of Statistical Methods,
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm)

I Frequentist Econometricians have it harder: We pretend to attempt and find
evidence against our hypothesis, then are relieved when we don’t find it.

I Essentially stationarity/unit root testing is defining how a distribution could
look if it was not stationary, then compare our data to this.

Strict Stationarity: Properties of a process are unaffected by a change in its
time origin.

Weak/Covariance Stationarity: Mean, Variance and Covariance of a joint
distribution are unaffected by a change of time origin.

Econometric statements usually concern distributional moments (eg. change in
E [Y | X ]), if these change over time ⇒ loss of generality.

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm


Weak Stationarity

E [Yt ] = µ ∀t ∈ T (14)
V [Yt ] = σ2 = γ0 <∞ ∀t ∈ T (15)

Cov [Yt ,Yt−s ] = E [(Yt − µ)(Yt−k − µ)] = γk ∀k < t (16)



ARMA processes

A Moving Average process of order q:

yt = εt + α1εt−1 + ...+ αqεt−q (17)

An Autoregressive process of order p:

yt = θ1yt−1 + ...+ θpyt−p + εt (18)

An ARMA(p, q) process:

yt = θ1yt−1 + ...+ θpyt−p + εt + α1εt−1 + ...+ αqεt−q (19)



Lag Operators

Lyt = yt−1 (20)
L2yt = L(Lyt) = yt−2

AR(1) in lag notation:

yt = θyt−1 + εt = θLyt + εt

εt = (1− θL)yt (21)

AR(p) in lag polynomial notation with lag polynomial θ(L). The lag polynomial
is a filter, when applied to an AR(p) process it produces a white noise process
ε.

θ(L)yt = εt

θ(L) = 1− θ1L− θ2L2 − ...− θpLp (22)



Inverse Lag Polynomial

Inverse lag polynomial θ−1L : θ−1(L)θ(L) = 1. An AR polynomial is invertible if
| θ |< 1.

(1− θL)yt = εt

(1− θL)−1 =
∞∑
j=0

θjLj (23)

Inverse lag polynomials allow to re-write MA processes in finite order AR terms.
The MA polynomial is invertible if | α |< 1.

yt = εt + α1εt−1 + ...+ αqεt−q

yt = α(L)εt (24)
α(L) = 1 + αqL + α2L2 + ...+ αqLq

α−1(L)yt = εt An AR(q=∞) process (25)



Characteristic Roots

Rewrite the second order lag polynomial with roots φ = (φ1, φ2).

1− θ1L− θ2L2 = (1− φ1L)(1− φ2L) (26)

The polynomial is invertible if both 1− φ1L and 1− φ2L are invertible, ie.
| φ1 |< 1 and | φ1 |< 1.

This can be tested by formulating the characteristic equation. It can be solved
for two roots z1, z2. If any root is smaller or equal 1, it is called a unit root and
the polynomial is not invertible.

(1− φ1z)(1− φ2z) = 0 (27)



Unit Roots Example

yt = 1.2yt−1 − 0.32yt−2 + εt

εt = (1− 0.8L)(1− 0.4L)yt

1− 1.2z + 0.32z2 = (1− 0.8z)(1− 0.4z) = 0

z1 = 1
0.8 > 1 ; z2 = 1

0.4 > 1 (28)

⇒ The AR polynomial is invertible.



Unit Roots and Stationarity

Any finite order MA process is stationary, because it is the weighted sum of
stationary white noise processes εt by design.

An auto-regressive process with θ ≥ 1 is not stationary, because its variance
cannot be solved analytically (unless σ2 = V [ε] = 0).

yt = θyt−1 + εt s.t. θ = 1
V [yt ] = V [yt−1] + V [εt ] = V [yt ] + σ2

More precisely, an AR process with θ = 1 is called a random walk (a process for
which E [Yt ] = E [Yt−1]).

With θ > 1 it is non-stationary.



Unit Root Testing: Dickey and Fuller

The Dickey-Fuller and Augmented Dickey-Fuller test construct a simple test
statistic DF and provide tables of critical values to reject H0 :| θ |= 1.

Yt = δ + θYt−1 + εt

DFµ = θ̂ − 1
s.e.(θ̂)

(29)

Augmented Dickey Fuller test regression:

∆Yt = δ + γYt−1 + εt

DFτ = γ̂

s.e.(γ̂) (30)


