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Time Series

Time Series: Consecutive realizations of the same random variable Y (eg.
production output) in periods t € T = (1,2,..., T).

Auto-Regression (AR): Meaningful impact of past periods’ realizations on
current realization.

Yi=8640Yi1+e (1)
Ele:] = OVt € T; Var[e)] = o2Vt € T; Cover,es] =0Vs At e T; |6]< 1

Moving Average (MA): Past periods’ deviations from predicted values impact
current realization.

Yi=p+ e+ oare1 (2)



€+ will usually be assumed to be white noise:

» serially uncorrelated
» 0 mean
» finite variance




Autoregression 1

Y =64+0Y—1+ e

Expected Value:

E[Yt] == (5 + eE[thl]
E[Y: | t] = E[Y:] = E[Y:-1] (expected value does not depend on t)
5

H:E[Yt]:m (3)

Define y: = Y: — p, lose the intercept term 4.



Autoregression 2

Variance:

VIY:] = VIS +0Yi1 + €] = V[0Yi 1] = 0°V[Yi1] + V]ed]

VY] = V[Yioa] = V[Yi] = 1(10 (4)

Covariance:

2
Cov(ys, ye1) = Elve, yia] = E[0yims + e0)yia] = OVIyeea] = 0775 (5)

kU2

Cov(ye, ye—k) =0 ) (6)



Moving Averages 1

Ye=p+ e+ a1
E[Y:]=p ()

Variance and Covariance:
V[Y:] = [(er + cer—1)?] = E[€l] + *E[e;_1] = (1 + °)o®  (8)

Cov[Ys, Yi1] = E[(ec + aer—1)(ec—1 + aer—s] = aE[e;_4] = ao’ (9)
Cov[Yt, Yi2] = E[(e: + a€e—1)(et—2 + cer—3] =0 (10)



Relationship between AR and MA

» AR is a “long-memory” process, MA has an auto-covariance of 0 for all
distances greater than 1 period.
» AR can be written as an infinite-order MA process if | 6 |< 1:

Y: = 6+0Yt71 + €
Yee1=04+0Yi—2+ €1
=Y = M+92(Yt—2 - M) + €t + Oer—1

N—1
= Yt = Gn(thg - /,L) + Z@jetﬂ'
Jj=0
nll)n;o Yt =u —+ Zejﬁtfj (11)

j=0



Autocovariance and Autocorrelation Functions (ACF)

vk = Cov[Ys, Yi—k] = Cov[Y:i—«, Y:] (Autocovariance) (12)
Cov[Ys, Yeok]l vk .

= ———1 = — = Autocorrellation 13

Pk VIV o (13)

Yk € [o0,00] ; pk € [-1,1]



Autocorrelation in AR

4 AR(1) with #=0.5 4 AR(1) with #= 0.9
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Figure 2: Verbeek, 2003, Figure 8.1: “First order autoregressive processes: data series
and autocorrelation functions”



Autocorrelation in MA

4 MA(1) with e = 0.5 4 MA(1) withe=0.9
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Flgure 8.2 First order moving average processes: data series and autocorrelation functions

Figure 3: Verbeek, 2003, Figure 8.2:
and autocorrelation functions”

“First order moving average processes: data series



Stationarity

Stationarity is a statistical concept describing joint distributions.

» Engineers have it easier: “Stationarity can be defined in precise
mathematical terms, but for our purpose we mean a flat looking series [...]"
(NIST/SEMATECH e-Handbook of Statistical Methods,
https://www.itl.nist.gov/div898/handbook /pmc/section4 /pmc442.htm)

» Frequentist Econometricians have it harder: We pretend to attempt and find
evidence against our hypothesis, then are relieved when we don't find it.

> Essentially stationarity/unit root testing is defining how a distribution could
look if it was not stationary, then compare our data to this.

Strict Stationarity: Properties of a process are unaffected by a change in its
time origin.

Weak/Covariance Stationarity: Mean, Variance and Covariance of a joint
distribution are unaffected by a change of time origin.

Econometric statements usually concern distributional moments (eg. change in
E[Y | X]), if these change over time = loss of generality.


https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm

Weak Stationarity

E[Vi]=p VteT (14)
VY =c"=v<oo VteT (15)
Cov[Ye, Yees] = E[(Ye = p)(Yeek —p)l = w Yk <t (16)



ARMA processes

A Moving Average process of order q:

Yt =€+ ar€—1+ ... + ag€t—q (17)

An Autoregressive process of order p:

Ye=01ye—1+ ...+ O0pyi—p + € (18)

An ARMA(p, q) process:

Yt = 91)471 + ...+ Opytfp + €+ 161+ ... + Qg€t—g (19)



Lag Operators

Lyt = Yt—1 (20)
LZYt = L(Ly:) = yr—2

AR(1) in lag notation:

Yt = ‘9}/t—1 + € = 91—_)/1* + €t
€t = (1 - eL)_)/t (21)

AR(p) in lag polynomial notation with lag polynomial (L). The lag polynomial
is a filter, when applied to an AR(p) process it produces a white noise process
€.

Q(L)yt = €t
O(L) =1— 0L — 01> — ... — 0,L° (22)



Inverse Lag Polynomial

Inverse lag polynomial §7'L : 7*(L)O(L) = 1. An AR polynomial is invertible if
|6 |< 1.

(1 — 9L)yt = €t

(1—6L)" Z oL (23)

Inverse lag polynomials allow to re-write MA processes in finite order AR terms.
The MA polynomial is invertible if | « |< 1.

Y = €+ 161+ ... + Qg€r—g

ye = a(L)e: (24)
(L) =1+ agl 4+ asl® + ... + aql?
a  (L)y: = ¢ An AR(q=00) process (25)



Characteristic Roots

Rewrite the second order lag polynomial with roots ¢ = (¢1, ¢2).

1—61L— 617 = (1 — ¢1L)(1 — ¢ol) (26)
The polynomial is invertible if both 1 — ¢1L and 1 — ¢ L are invertible, ie.

| ¢1]<1and | |< 1.

This can be tested by formulating the characteristic equation. It can be solved
for two roots zi, z;. If any root is smaller or equal 1, it is called a unit root and
the polynomial is not invertible.

(1-¢12)(1 — ¢2z) =0 (27)



Unit Roots Example

Y = 1-2yt—1 — 0.32_)/[»_2 + €+
e = (1—0.8L)(1 — 0.4L)y;
1-1.2z+0.322° = (1-0.8z)(1 - 0.4z) =0
1

1
I R S R RO
A=08"2T04” (28)

= The AR polynomial is invertible.



Unit Roots and Stationarity

Any finite order MA process is stationary, because it is the weighted sum of
stationary white noise processes ¢; by design.

An auto-regressive process with 6 > 1 is not stationary, because its variance
cannot be solved analytically (unless o = V[e] = 0).

Ye=0yi—1+e st 0=1
VIye] = Vye-1] + Ve = V] + 0
More precisely, an AR process with 8 = 1 is called a random walk (a process for
which E[Y:] = E[Yi-1]).

With 6 > 1 it is non-stationary.



Unit Root Testing: Dickey and Fuller

The Dickey-Fuller and Augmented Dickey-Fuller test construct a simple test
statistic DF and provide tables of critical values to reject Hp :| 6 |= 1.

Yt:5+9Yt—1+€t

0-1
DF, = - (29)
s.e.(0)
Augmented Dickey Fuller test regression:
AY: = 5+’Vyt—1 + €
DF, = —! (30)

s.e.(¥)



