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Panel Data

Panel Data combines aspects of time series and cross-sectional econometric
analysis.

We will have to deal with multi-dimensional group-specific effects.

Popular examples:
I Longitudinal Surveys
I Cross-Country Macro analysis
I Experiments rolled out in multiple waves (Why do researchers do that?)



OLS: Unbiasedness and Efficiency

Unbiasedness: E [β̂] = β ⇐ E [εi | Xi ] = E [εi ] = 0.

Efficiency: Var(β̂) ≤ Var(β∗) ∀β∗ 6= β̂ ⇐ V [ε̂i ] = σ2 ∀i ∈ N; Cov [εi , εj ] =
0 ∀i 6= j ∈ N.

Under Gauss-Markov Conditions 1 through 4, β̂OLS = (X ′X)−1X ′y is the best
unbiased linear estimator (BLUE).

If E [εi | Xi ] 6= 0 or if the covariance matrix of ε has no uniform diagonal and
only zero off-diagonal entries, we cannot guarantee BLUE.

Σε =

[
σ2 0 0
0 σ2 0
0 0 σ2

]
(1)



Panel Data: Big Questions

I Time Component: Did something happen that year?
I Serial Correlation: Cyclical Over- and undershooting?
I Dynamic Effects: last year’s investment and this year’s output?
I Group Effects: What if unobserved effects aren’t completely independent?
I Advantages of Panels: Number of observations, dynamic effects, group

effects
I Disadvantages of Panels: Small-sample properties of estimators, robusticity



Panel Data: Representation

You have observations (yit , xit) for individuals i ∈ I and periods t ∈ T . Estimate
the impact of x on y .

Most general formulation of a model (not much generality in meaning):

yit = αit + x ′itβit + εit (2)

I Strengths: Complex, Precise, allows for heterogeneity
I Weaknesses: No generalization



Panel Data: Pooled Errors

Simpler panel model:

yit = α + x ′itβ + εit (3)

We cannot assume εit to be independent and identically distributed (“i.i.d.”),
and specifically not εit ∼ N(0, σ2), if i and t are meaningful.

In face of auto-correlation: Construct Newey-West pooled errors for groups
i ∈ g ∈ G .

yit = α + x ′itβ + εit (4)
εit ∼ N(0, σg ) (5)

V̂ (β̂k ) = [X ′X ]−1[
C∑
c

x ′c ε̂′c ε̂cxc ][X ′X ]−1



Panel Data: Fixed and Random Effects

Fixed Effects: Cross-sectional units can have unobserved, mean-shifting
effects, eg. social connections favoring promotions. This allows for no common
intercept term.

Think of: Runners starting from somewhere behind the starting line.

yit = αi + β′xit + εit ; εit | IID(0, σ2
ε) (6)

Random Effects: Alternatively, the effects can be treated as individual but
drawn from a distribution F (0, σ2

α) which is independent from xit .

Think of: Wealth studies, but everyone plays the lottery.

yit = µ+ β′xit + αi + uit (7)



Fixed Effect Models

Least Squares Dummy Variable (LSDV) approach:

yit =
N∑

j=1

αjdij + x ′itβ + εit (8)

Mean Differencing:

ȳi = 1
T

T∑
t=1

yit

ȳi = αi + x̄ ′i + ε̄i

yit − ȳi = (xit − x̄)′β + (εit − ε̄i ) αi drops out (9)

First Differencing

yit − yit−1 = (αi − αi ) + (xit − xit−1)′β + (εit − εit−1)
∆yit = ∆x ′itβ + ∆εit (10)



Estimating Fixed Effects

Mean Differenced Models are also called within estimations:
I Efficiently estimated by pooled OLS.
I Unbiased only if covariates are strictly exogenous, ie. E [(xit − x̄iεit)] = 0

and E [xitεis ] = 0 ∀t 6= s ∈ T
I Same estimators but different standard erros as in LSDV.
I Intercept can be retrieved.

β̂FE =

(
N∑

i=1

T∑
j=1

(xit − x̄i )(xit − x̄i )′
)−1 N∑

i=1

T∑
j=1

(xit − x̄i )(yit − ȳi ) (11)

α̂i = ȳi − β̂′FE x̄i (12)

Note: In short and wide panels (small T, large N) the intercept cannot be
efficiently retrieved.



Random Effects

RE allow for serial correlation of error terms and decompose errors in a
time-dependent effect error αi and a time-invariant error εit .

yit = µ+ x ′itβ + uit (13)
uit = αi + εit (14)

E(εit | xit) = 0⇒ E(uit | αi , xit) = 0

Properties of uit :

E(u2
it) = σ2

α + σ2 + 2Cov(αi , uit) = σ2
α + σ2 (15)

E(uituis) = E [(αi + uit)(αi + uis)] = σ2
α (16)



Estimating Random Effects

I µ and β can be consistently estimated by OLS.
I Standard errors can not be consistently estimated by OLS.
I GLS provides consistent and efficient estimation, for ιT a T × 1 vector of

1s and IT the T-dimensional identity matrix.

V [αi ιT + εit ] ≡ Ω = σ2
αιtι

′
T + σ2

ε IT (17)

Ω−1 = σ−2
ε

[
IT −

σ2
α

σ2
ε + Tσ2

α
ιT ι
′
T

]
= σ−2

ε

[(
IT −

1
T ιT ι

′
T

)
+ ψ

1
T ιT ι

′
T

]
ψ = σ2

α

σ2
ε + Tσ2

α
(18)

β̂GLS =

(
N∑

i=1

T∑
j=1

(xit − x̄i )(xit − x̄i )′ + ψT
N∑

i=1

(x̄i − x̄)(x̄i − x̄)′
)−1

×

(
N∑

i=1

T∑
j=1

(xit − x̄i )(yit − ȳi )′ + ψT
N∑

i=1

(x̄i − x̄)(ȳi − ȳ)′
)
(19)



Estimating Random Effects: Between and Within Estimator

I The GLS estimator is a weighted mean of the between and within
estimators with weights λ and (1− λ).

β̂GLS = λβ̂B + (1− λ)β̂W (20)

β̂B =

(
N∑

i=1

(x̄i − x̄)(x̄i − x̄)′
)−1( N∑

i=1

(x̄i − x̄)(ȳi − ȳ)′
)

β̂W =

(
N∑

i=1

T∑
j=1

(xit − x̄i )(xit − x̄i )′
)−1 N∑

i=1

T∑
j=1

(xit − x̄i )(yit − ȳi )



Relationship between Panel Estimators

Relationship between FE, RE and Pooled OLS is given by effect heterogeneity
σ2

α.
I For maximum heterogeneity, FE converges to RE
I For minimum heterogeneity, RE converges to Pooled OLS
I FE does not allow for identification of time-invariant covariates (eg. years

of schooling among workers).
I FE identifies differences within individuals yit − ȳi , not between individuals

ȳi − ȳj .
I RE does not allow for meaningful identification of effects
I RE identifies the between difference ȳi − ȳ .

I RE is more efficient for ψ = σ2
α

σ2
ε+Tσ2

α
> 1.



Model Selection (Hausman Test)

The choice between FE and RE makes a substantial difference in estimating β.

The expected values in FE an RE are the same if xij and αi are uncorrelated ⇒
prefer FE to identify αi , or RE for higher efficiency.

Hausman Test: H0 : E [xitαi ] = 0 ; HA : E [xit , αi ] 6= 0.
I β̂FE is consistent and efficient under both H0 and HA.
I β̂RE is consistent only under H0.
I Only under H0, V [β̂FE + β̂RE ] = V [β̂FE ] + V [β̂RE ].

Hausmann test statistic:

ξH = (β̂FE − β̂RE )′[V̂ [β̂FE ]− V̂ [β̂RE ]]−1(β̂FE − β̂RE ) (21)
ξH ∼ χ2(K)


