Lab 5: Conditional Quantile Regression Econometrics Beyond Ordinary Least Squares

Patrick Mokre

WS 2020/2021

Conditional Quantile Regression

- Koenker and Basset (1978): Apply the optimization intuition behind OLS to non-mean moments of dependent variable y.
- Impact of mean X on distribution of y.

Examples:

- Unionization more important for lower-wage segments.
- Lawyer expenditures matter more for high-wealth percentiles.
- Class size has a more negative impact on low than on high course evaluations.
- Closing of gender gap in wage increases is less accentuated in the top of the distribution.

CQR: Illustration with i.i.d. errors

Figure 1: Intercept Shift: OLS and CQR (quantiles $0.1,0.5$ and 0.9) fit lines for i.i.d. errors.

CQR: Illustration with heteroskedastic errors

Figure 2: Slope Shift: OLS and CQR (quantiles $0.1,0.5$ and 0.9) fit lines with heteroskedasticity.

OLS: Conditional Expected Value

If $E\left[\epsilon_{i} \mid x_{i}\right]=0, x_{i}$ is exogenous.
$E\left[y_{i} \mid x_{i}\right]=x_{i}^{\prime} \beta$: the conditional expectation of y_{i}.
$\beta=\frac{\partial E\left[y_{i} \mid x_{i}\right]}{\partial x_{i}}$: the marginal effect of x_{i} on the conditional mean of y_{i}.
Conditional Mean: Approximation for location parameter of $F(Y)$.

$$
\begin{equation*}
P\left(Y_{t}<y\right)=F\left(y-x_{i}^{\prime} \beta\right) \tag{1}
\end{equation*}
$$

If $F()$ is precisely known, some efficient maximum likelihood estimator for β exists.
If $F()$ is the Gaussian Normal, $\hat{\beta}$ ols is the best unbiased linear estimator (BLUE).
$\hat{\beta}_{O L S}$ is very sensitive to outliers; and a poor estimator for non-Gaussian Normal $F()$.

OLS: Are errors normally distributed?

The aphorism made famous by Poincare and quoted by Cramèr that, "everyone believes in the [Gaussian] law of errors, the experimenters because they think it is a mathematical theorem, the mathematicians because they think it is an experimental fact," is still all too apt. This "dogma of normality" as Huber has called it, seems largely attributable to a kind of wishful thinking.

Koenker and Basset, 1978, 34

CQR: Conditional Quantiles

Starting point: Alternative approximation of location parameter.
Expansion: Quantiles θ_{τ} of $F\left(y_{i}\right)$, the value that has $100 \times \tau \%$ of the observation of the observations below it.

Example: $\theta .75$ of a variable uniformly distributed between 1 and 100 is 75 .

$$
\begin{equation*}
\theta_{\tau}: \min _{b \in R}\left[\sum_{i \in i: y_{i} \geq b} \theta\left|y_{i}-b\right|+\sum_{i \in i: y_{i}<b}(1-\theta)\left|y_{i}-b\right|\right] \tag{2}
\end{equation*}
$$

Conditional and Unconditional Quantiles

- Conditional Quantiles: Quantile within group of observations with same covariates. Eg. for $x_{i} \in$ ('low wage', 'high wage'), $\theta_{0.75}\left(y_{i} \mid x_{i}=\right.$ 'low wage') the 75th income percentile among low wage earners.
- Unconditional Quantiles: Quantile of the overall sample distribution.

Quantile Regression Coefficients

- CQR: Return of a marginal change in x_{i} on $y_{i} \mid x_{i}$ while holding x_{i} constant: Income effect of a Bacherlor degree for workers without a Bachelor degree.
- UQR: Return of a marginal change in the population distribution of x_{i} on the distribution of y_{i} : How much does the 75th income percentile increase if the share of people with a Bachelor degree increases (marginally).

Strengths:

- CQR: Allows for analysis within subgroups, more granular view.
- UQR: More intuitive interpretation, more general results.

CQR Treatment Effect

Lehmann (1974): Let x be a treatment which you either receive or not; the treament adds Δy if the untreated response $y \mid x=0$ would be y.
Two distributions $F(y)$ and $G(y+\Delta(y)) \Rightarrow$ quantile treatment effect $\delta(\tau)$.

$$
\begin{align*}
F(y) & =G(y+\Delta(y)) \tag{3}\\
\Delta(y) & =G^{-1}(F(y))-y \\
\tau & =F(y) \\
\delta(\tau) & =\Delta\left(F^{-1}(\tau)\right)=G^{-1}(\tau)-F^{-1}(\tau) \tag{4}
\end{align*}
$$

Estimate quantile treatment effect for groups n (treatment) and m (control):

$$
\begin{equation*}
\hat{\delta}_{\tau}=\hat{G}_{n}^{-1}-\hat{F}_{m}^{-1} \tag{5}
\end{equation*}
$$

CQR Treatment Effects: Idea

Figure 3: Koenker, 2005, Fig 2.1: "Lehmann quantile treatment effect. Horizontal distance between the treatment and control (marginal) distribution functions."

CQR Treatment Effects: Standard Cases

Figure 4: Koenker, 2005, Fig 2.2: "Lehmann quantile treatment effect for three examples. Location shift, scale shift, and location-scale shift."

CQR Treatment Effects: Skewness Shift

Figure 5: Koenker, 2005, Fig 2.3: "Lehmann quantile treatment effect for an asymmetric example. The treatment reverses the skewness of the distribution function."

CQR: Multivariate treatment

Denote treatments in dummy variable $D_{i j}$ which is 1 if subject i received treatment j.

$$
\begin{equation*}
Q_{y_{i}}\left(\tau \mid D_{i j}\right)=\alpha_{\tau}+\sum_{j=1}^{p} \delta_{j}(\tau) D_{i j} \tag{6}
\end{equation*}
$$

If treatment variation is continuous (eg. days of receiving unemployment benefits) and treatment effects are equidistant, ie. the effect of increasing days from 2 to 3 is the same as from 9 to 10 .

$$
\begin{equation*}
Q_{y_{i}}\left(\tau \mid D_{i j}\right)=\alpha_{\tau}+\beta(\tau) x_{i} \tag{7}
\end{equation*}
$$

CQR: Euclidian Distance Loss Function

In OLS, the loss function subject to minimization is the squared sum of errors $\sum\left(y_{i}-\hat{y}\right)^{2}$.
For CQR the distance function $\|\hat{y}-y\|$ depends on τ.

$$
\begin{align*}
d(\hat{y}, y) & =\sum_{i}^{N} \rho_{\tau}\left(y_{i}-\hat{y}_{i}\right) \\
& =\sum_{i}^{N} \rho_{\tau}\left(y_{i}-x_{i} \beta(\tau)\right) \tag{8}\\
\hat{\beta}(\tau) & : \min _{\beta(\tau)} \sum_{i} \rho_{\tau}\left(y_{i}-x_{i} \beta(\tau)\right) \tag{9}
\end{align*}
$$

CQR: Loss Function

Loss function ρ_{τ} takes different values for $y_{i} \leq x_{i} \beta(\tau)$ and $y_{i}>x_{i} \beta(\tau)$.

$$
\begin{align*}
\rho_{\tau}\left(y_{i}-x_{i} \beta(\tau)\right) & = \begin{cases}\left(y_{i}-x_{i} \beta(\tau)\right)(\tau-1) & \text { if } y_{i} \leq x_{i} \beta(\tau) \\
\left(y_{i}-x_{i} \beta(\tau)\right) \tau & \text { if } y_{i}>x_{i} \beta(\tau)\end{cases} \\
& =\sum_{i}\left(\left(y_{i}-x_{i} \beta(\tau)\right)(\tau-1)\right) \mathbb{1}\left(y_{i} \leq x_{i} \beta(\tau)\right) \\
& +\sum_{i}\left(\left(y_{i}-x_{i} \beta(\tau)\right)(\tau)\right) \mathbb{1}\left(y_{i}>x_{i} \beta(\tau)\right) \tag{10}
\end{align*}
$$

One can efficiently estimate $\hat{\beta}_{\tau}$ by maximizing the log-likelihood of $\rho_{\tau}\left(y_{i}, x_{i} \beta_{\tau}\right)$

CQR: Special Cases

Median $\tau=0.5$:

- As many observations below and above Q_{τ}
- $\tau=-(\tau-1)$
$-\rho_{\tau}=\sum_{y_{i}>x_{i} \beta}\left(y_{i}-x_{i} \beta\right)-\sum_{y_{i} \leq x_{i} \beta}\left(y_{i}-x_{i} \beta\right)=\sum_{i}\left|y_{i}-x_{i} \beta\right|$.
Only constant $y_{i}=\beta_{\tau}$:
$\Rightarrow \frac{\partial}{\partial \beta_{\tau}}=\sum_{i} \rho_{\tau}\left(y_{i}-\beta_{\tau}\right)=\sum_{y_{i} \leq \beta_{t} a u}(\tau-1)+\sum_{y_{i}>\beta_{\tau}} \tau=0$.
- Condition only holds if the share of observations with $y_{i} \leq \beta_{\tau}$ is τ
- β_{τ} is the population percentile τ.

CQR: Visual Intuition

Figure 1. Interpreting conditional quantile regressions

Figure 6: Fournier, 2012, Fig 1: "Interpreting conditional quantile regressions"

CQR: Estimation

Linear programming (1_{n} be a n-entry vector of ones):

$$
\begin{gather*}
u=X_{i} \beta_{\tau} \\
\min _{\beta, u^{+}, u^{-} \in R^{k} \times R_{+}^{2 n}}\left[\tau 1_{n}^{\prime} u^{+}(1-\tau) 1_{n}^{\prime} u^{-} \mid X \beta+u^{+}-u^{-}=Y\right] \tag{11}\\
u_{j}^{+}=\max \left(u_{j}, 0\right) ; u_{j}^{-}=\min \left(u_{j}, 0\right)
\end{gather*}
$$

Bayesian Estimation: An asymmetric Laplace (ALD) likelihood is equivalent to the CQR loss function.

$$
\begin{align*}
\max _{\beta} L(\beta) & =n \log (q)+n \log (1-q)-\sum_{i}^{N} \rho_{\tau}\left(y_{i}-x_{i} \beta_{\tau}\right) \tag{12}\\
\rho_{\tau}(x) & =\frac{|x|+(2 q-1)}{2} \\
y_{i j}-x_{i j} \beta_{i} & \sim A L D(q) \\
\beta_{i} & \sim N(\mu, \Sigma)
\end{align*}
$$

CQR: Standard Errors

If errors are i.i.d., the asymptotic covariance matrix of the errors $\beta-\beta$ can be approximated from the probability density function and allows for estimation of standard errors.

$$
\begin{align*}
& \xi(\theta)=F^{-1}(\theta) ; \xi_{i}(\theta)=\beta_{i}^{*}-\beta \\
& \sqrt{T}\left(\xi\left(\theta_{1}\right)-\xi\left(\theta_{1}\right), \ldots, \xi\left(\theta_{M}\right)-\xi\left(\theta_{M}\right)\right) \rightarrow \sim N(0, \Omega) \tag{13}\\
& \quad \omega_{i j}=\frac{\theta_{i}\left(1-\theta_{j}\right)}{f\left(\xi\left(\theta_{i}\right)\right) f\left(\xi\left(\theta_{j}\right)\right)} \tag{14}
\end{align*}
$$

Alternative estimation methods for standard errors in linear programming includes confidence intervals from rank tests, Huber sandwich errors, Powell kernel sandwich estimates, and different bootstrapping techniques.

