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Conditional Quantile Regression

> Koenker and Basset (1978): Apply the optimization intuition behind OLS
to non-mean moments of dependent variable y.
» Impact of mean X on distribution of y.

Examples:

» Unionization more important for lower-wage segments.

» Lawyer expenditures matter more for high-wealth percentiles.

» Class size has a more negative impact on low than on high course
evaluations.

» Closing of gender gap in wage increases is less accentuated in the top of the
distribution.



CQR: lllustration with i.i.d. errors

(a) OLS (b) CQR
Figure 1: Intercept Shift: OLS and CQR (quantiles 0.1, 0.5 and 0.9) fit lines for i.i.d.

errors.



CQR: lllustration with heteroskedastic errors

(a) OLS (b) CQR
Figure 2: Slope Shift: OLS and CQR (quantiles 0.1, 0.5 and 0.9) fit lines with
heteroskedasticity.



OLS: Conditional Expected Value

If Ele; | xi] =0, x; is exogenous.
Elyi | xi] = x{ 8: the conditional expectation of ;.
B = %: the marginal effect of x; on the conditional mean of y;.

Conditional Mean: Approximation for location parameter of F(Y).

P(Ye <y)=F(y —xB) (1)

If F() is precisely known, some efficient maximum likelihood estimator for 3
exists.

If F() is the Gaussian Normal, ﬁAOLs is the best unbiased linear estimator
(BLUE).

Bois is very sensitive to outliers; and a poor estimator for non-Gaussian Normal

F().



OLS: Are errors normally distributed?

The aphorism made famous by Poincare and quoted by Cramér that,
“everyone believes in the [Gaussian] law of errors, the experimenters
because they think it is a mathematical theorem, the mathematicians
because they think it is an experimental fact,” is still all too apt. This

“dogma of normality” as Huber has called it, seems largely attributable
to a kind of wishful thinking.

Koenker and Basset, 1978, 34



CQR: Conditional Quantiles

Starting point: Alternative approximation of location parameter.

Expansion: Quantiles 6, of F(y;), the value that has 100 x 7 % of the
observation of the observations below it.

Example: 075 of a variable uniformly distributed between 1 and 100 is 75.

6rimin| S 0lyi—b|+ Y (1-6)|y b (2)

i€ityi>b i€ityi<b



Conditional and Unconditional Quantiles

» Conditional Quantiles: Quantile within group of observations with same
covariates. Eg. for x; € ('low wage’, "high wage'), 00.75(yi | x; = 'low wage’)
the 75th income percentile among low wage earners.

» Unconditional Quantiles: Quantile of the overall sample distribution.

Quantile Regression Coefficients

» CQR: Return of a marginal change in x; on y; | x; while holding x; constant:
Income effect of a Bacherlor degree for workers without a Bachelor degree.

» UQR: Return of a marginal change in the population distribution of x; on
the distribution of y;: How much does the 75th income percentile increase if
the share of people with a Bachelor degree increases (marginally).

Strengths:

» CQR: Allows for analysis within subgroups, more granular view.
» UQR: More intuitive interpretation, more general results.



CQR Treatment Effect

Lehmann (1974): Let x be a treatment which you either receive or not; the
treament adds Ay if the untreated response y | x = 0 would be y.

Two distributions F(y) and G(y + A(y)) = quantile treatment effect 6(7).

F(y) = G(y + A(y)) (3)
Aly)=G ' (F(y) -y

™= F(y)
5(r) =A(F (1)) =G Y(r) — F () (4)

Estimate quantile treatment effect for groups n (treatment) and m (control):

b, =Gt —F,t (5)



CQR Treatment Effects: ldea
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Figure 3: Koenker, 2005, Fig 2.1: “Lehmann quantile treatment effect. Horizontal
distance between the treatment and control (marginal) distribution functions.”



CQR Treatment Effects: Standard Cases

Location Shift Scale Shift Location and Scale Shift
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Figure 4: Koenker, 2005, Fig 2.2: “Lehmann quantile treatment effect for three
examples. Location shift, scale shift, and location-scale shift.”



CQR Treatment Effects: Skewness Shift
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Figure 5: Koenker, 2005, Fig 2.3: “Lehmann quantile treatment effect for an
asymmetric example. The treatment reverses the skewness of the distribution function.”



CQR: Multivariate treatment

Denote treatments in dummy variable D; which is 1 if subject i received
treatment .

Qi( | Dy) = ar+ 3 _ §(r)Dy (6)

j=1
If treatment variation is continuous (eg. days of receiving unemployment

benefits) and treatment effects are equidistant, ie. the effect of increasing days
from 2 to 3 is the same as from 9 to 10.

Qy(7 | Dy) = ar + B(7)x; (7)



CQR: Euclidian Distance Loss Function

In OLS, the loss function subject to minimization is the squared sum of errors
Sy —9)
For CQR the distance function ||§ — y|| depends on 7.

d(@,y) =Y prlvi— )

=Y prlyi = xiB(7)) (8)
B(r) s min D~ pr(vi = xB(7)) (9)



CQR: Loss Function

Loss function p. takes different values for y; < x;3(7) and y; > x;8(7).

ooty = {1 70T ()
(vi — x,ﬁ(r)) if yi > xi8(7)

_ Z —xiB(T))(r = ) L(y: < x8(7))

+ Z (i = xBE)E)Ly: > xiB(7)) (10)

One can efficiently estimate 3, by maximizing the log-likelihood of p-(yi, xi3-)



CQR: Special Cases

Median 7 = 0.5:

» As many observations below and above Q-

> r=—(r-1)

> pr = Z,Vi>X;B(yi - X'ﬂ) - Zy/'ﬁxiﬁ(yi o X’ﬂ) = Ei lvi = Xiﬂl'
Only constant y; = f3,:

Z pr(yi = Br) = ZyiSBtau(T —1)+ Zyi>ﬂr T
> Condltlon only holds if the share of observations with y; < 3, is 7
» [, is the population percentile 7.



CQR: Visual Intuition

Figure 1. Interpreting conditional quantile regressions
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Figure 6: Fournier, 2012, Fig 1: “Interpreting conditional quantile regressions”



CQR: Estimation

Linear programming (1, be a n-entry vector of ones):

u= XiﬂT
min [Tlf,u+(1 7)o | XBH+u" —u = Y] (11)
B,u*,u*EkaRi"
u = max(u;,0) ; u; = min(u;,0)

Bayesian Estimation: An asymmetric Laplace (ALD) likelihood is equivalent to
the CQR loss function.

max L(8) = nlog(q) + nlog(1 = a) = > _pr(yi =x6-)  (12)
PT(X) — |X‘ + (;q — 1)

yij — xijBi ~ ALD(q)
Bi ~ N(N7 Z)



CQR: Standard Errors

If errors are i.i.d., the asymptotic covariance matrix of the errors 8 — 3 can
be approximated from the probability density function and allows for estimation
of standard errors.

E0)=F70): &(0) =5/ - B
VT(E(01) = E(01), -, £(Om) — £(Om)) =~ N(0, Q) (13)
0:(1—6))
Wij = =~~~ v 14
= FEO)FE®) (4

Alternative estimation methods for standard errors in linear programming
includes confidence intervals from rank tests, Huber sandwich errors, Powell
kernel sandwich estimates, and different bootstrapping techniques.



