
Lab 5: Conditional Quantile Regression
Econometrics Beyond Ordinary Least Squares

Patrick Mokre

WS 2020/2021



Conditional Quantile Regression

I Koenker and Basset (1978): Apply the optimization intuition behind OLS
to non-mean moments of dependent variable y .

I Impact of mean X on distribution of y .

Examples:
I Unionization more important for lower-wage segments.
I Lawyer expenditures matter more for high-wealth percentiles.
I Class size has a more negative impact on low than on high course

evaluations.
I Closing of gender gap in wage increases is less accentuated in the top of the

distribution.



CQR: Illustration with i.i.d. errors
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Figure 1: Intercept Shift: OLS and CQR (quantiles 0.1, 0.5 and 0.9) fit lines for i.i.d.
errors.



CQR: Illustration with heteroskedastic errors
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Figure 2: Slope Shift: OLS and CQR (quantiles 0.1, 0.5 and 0.9) fit lines with
heteroskedasticity.



OLS: Conditional Expected Value

If E [εi | xi ] = 0, xi is exogenous.

E [yi | xi ] = x ′i β: the conditional expectation of yi .

β = ∂E [yi |xi ]
∂xi

: the marginal effect of xi on the conditional mean of yi .

Conditional Mean: Approximation for location parameter of F (Y ).

P(Yt < y) = F (y − x ′i β) (1)

If F () is precisely known, some efficient maximum likelihood estimator for β
exists.

If F () is the Gaussian Normal, β̂OLS is the best unbiased linear estimator
(BLUE).

β̂OLS is very sensitive to outliers; and a poor estimator for non-Gaussian Normal
F ().



OLS: Are errors normally distributed?

The aphorism made famous by Poincare and quoted by Cramèr that,
“everyone believes in the [Gaussian] law of errors, the experimenters
because they think it is a mathematical theorem, the mathematicians
because they think it is an experimental fact,” is still all too apt. This
“dogma of normality” as Huber has called it, seems largely attributable
to a kind of wishful thinking.

Koenker and Basset, 1978, 34



CQR: Conditional Quantiles

Starting point: Alternative approximation of location parameter.

Expansion: Quantiles θτ of F (yi ), the value that has 100× τ % of the
observation of the observations below it.

Example: θ.75 of a variable uniformly distributed between 1 and 100 is 75.

θτ : min
b∈R

[ ∑
i∈i :yi≥b

θ | yi − b | +
∑

i∈i :yi<b

(1− θ) | yi − b |

]
(2)



Conditional and Unconditional Quantiles

I Conditional Quantiles: Quantile within group of observations with same
covariates. Eg. for xi ∈ (’low wage’, ’high wage’), θ0.75(yi | xi = ’low wage’)
the 75th income percentile among low wage earners.

I Unconditional Quantiles: Quantile of the overall sample distribution.

Quantile Regression Coefficients
I CQR: Return of a marginal change in xi on yi | xi while holding xi constant:

Income effect of a Bacherlor degree for workers without a Bachelor degree.
I UQR: Return of a marginal change in the population distribution of xi on

the distribution of yi : How much does the 75th income percentile increase if
the share of people with a Bachelor degree increases (marginally).

Strengths:
I CQR: Allows for analysis within subgroups, more granular view.
I UQR: More intuitive interpretation, more general results.



CQR Treatment Effect

Lehmann (1974): Let x be a treatment which you either receive or not; the
treament adds ∆y if the untreated response y | x = 0 would be y .

Two distributions F (y) and G(y + ∆(y))⇒ quantile treatment effect δ(τ).

F (y) = G(y + ∆(y)) (3)
∆(y) = G−1(F (y))− y

τ = F (y)
δ(τ) = ∆(F−1(τ)) = G−1(τ)− F−1(τ) (4)

Estimate quantile treatment effect for groups n (treatment) and m (control):

δ̂τ = Ĝ−1n − F̂−1m (5)



CQR Treatment Effects: Idea

Figure 3: Koenker, 2005, Fig 2.1: “Lehmann quantile treatment effect. Horizontal
distance between the treatment and control (marginal) distribution functions.”



CQR Treatment Effects: Standard Cases

Figure 4: Koenker, 2005, Fig 2.2: “Lehmann quantile treatment effect for three
examples. Location shift, scale shift, and location-scale shift.”



CQR Treatment Effects: Skewness Shift

Figure 5: Koenker, 2005, Fig 2.3: “Lehmann quantile treatment effect for an
asymmetric example. The treatment reverses the skewness of the distribution function.”



CQR: Multivariate treatment

Denote treatments in dummy variable Dij which is 1 if subject i received
treatment j.

Qyi (τ | Dij ) = ατ +
p∑

j=1

δj (τ)Dij (6)

If treatment variation is continuous (eg. days of receiving unemployment
benefits) and treatment effects are equidistant, ie. the effect of increasing days
from 2 to 3 is the same as from 9 to 10.

Qyi (τ | Dij ) = ατ + β(τ)xi (7)



CQR: Euclidian Distance Loss Function

In OLS, the loss function subject to minimization is the squared sum of errors∑
(yi − ŷ)2.

For CQR the distance function ‖ŷ − y‖ depends on τ .

d(ŷ , y) =
N∑
i

ρτ (yi − ŷi )

=
N∑
i

ρτ (yi − xiβ(τ)) (8)

β̂(τ) : min
β(τ)

∑
i

ρτ (yi − xiβ(τ)) (9)



CQR: Loss Function

Loss function ρτ takes different values for yi ≤ xiβ(τ) and yi > xiβ(τ).

ρτ (yi − xiβ(τ)) =
{

(yi − xiβ(τ))(τ − 1) if yi ≤ xiβ(τ)
(yi − xiβ(τ))τ if yi > xiβ(τ)

=
∑

i

((yi − xiβ(τ))(τ − 1))1(yi ≤ xiβ(τ))

+
∑

i

((yi − xiβ(τ))(τ))1(yi > xiβ(τ)) (10)

One can efficiently estimate β̂τ by maximizing the log-likelihood of ρτ (yi , xiβτ )



CQR: Special Cases

Median τ = 0.5:
I As many observations below and above Qτ
I τ = −(τ − 1)
I ρτ =

∑
yi>xiβ

(yi − xiβ)−
∑

yi≤xiβ
(yi − xiβ) =

∑
i |yi − xiβ|.

Only constant yi = βτ :
I ∂

∂βτ
=
∑

i ρτ (yi − βτ ) =
∑

yi≤βt au(τ − 1) +
∑

yi>βτ
τ = 0.

I Condition only holds if the share of observations with yi ≤ βτ is τ
I βτ is the population percentile τ .



CQR: Visual Intuition

Figure 6: Fournier, 2012, Fig 1: “Interpreting conditional quantile regressions”



CQR: Estimation

Linear programming (1n be a n-entry vector of ones):

u = Xiβτ

min
β,u+,u−∈Rk×R2n

+

[
τ1′nu+(1− τ)1′nu− | Xβ + u+ − u− = Y

]
(11)

u+
j = max(uj , 0) ; u−j = min(uj , 0)

Bayesian Estimation: An asymmetric Laplace (ALD) likelihood is equivalent to
the CQR loss function.

max
β

L(β) = nlog(q) + nlog(1− q)−
N∑
i

ρτ (yi − xiβτ ) (12)

ρτ (x) = |x |+ (2q − 1)
2

yij − xijβi ∼ ALD(q)
βi ∼ N(µ,Σ)



CQR: Standard Errors

If errors are i.i.d., the asymptotic covariance matrix of the errors β − β can
be approximated from the probability density function and allows for estimation
of standard errors.

ξ(θ) = F−1(θ) ; ξi (θ) = β∗i − β
√
T (ξ(θ1)− ξ(θ1), ..., ξ(θM)− ξ(θM))→∼ N(0,Ω) (13)

ωij = θi (1− θj )
f (ξ(θi ))f (ξ(θj )) (14)

Alternative estimation methods for standard errors in linear programming
includes confidence intervals from rank tests, Huber sandwich errors, Powell
kernel sandwich estimates, and different bootstrapping techniques.


