Lab 6: Unconditional Quantile Regression

Econometrics Beyond Ordinary Least Squares

Patrick Mokre

WS 2020/2021



Unconditional Quantile Regression

Unconditional Quantiles: Quantiles of the overall distribution.

(a) Conditional Quantiles (b) Unconditional Quantiles

Figure 1: Conditional and Unconditional Quantiles



Conditional and Unconditional Quantile Regression Coefficients

CQR coefficients: Workers' benefit of transferring into public sector jobs.

UQR coefficients: Earnings increase if percentage of public sector workers

increases.
Effect on log earnings of working for the public sector
Panel A_ Australia Panel B. Korea
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Figure 2: Fournier, 2012, Fig 3: “Conditional and unconditional quantile regression
estimates of the impact on earnings from working in the public sector”



UQR and Inequality

Changes in unconditional quantiles = retrieve changes in quantile ratios (eg.
80/20, 90/10).

Extend UQR to other distributional properties = retrieve changes in Gini

coefficient, mean-median ratio.

In OLS 3= E(Y | X =1) — E(Y | X = 0), the conditional effect of transferring
o Mix=1

between groups, as well as = 8’5—2”) with p = Xm

This does not hold for CQR, usually 3, = Fy (7 | X =1) — Fy X (7 | X =

0) # 25 = P(Y > g | X =1) = P(Y > g | X =0).



Influence Functions and Recentered Influence Functions

“The influence function IF(Y; v, Fy) of a distributional statistic v(Fy) represents

the influence of an individual observation on that distributional statistic.” (Firpo
et.al., 2009, 954)

Re-centered influence function RIF: RIF(Y;v,Fy) = v(Fy)+ IF(Y; v, Fy).
Note: E[RIF(y; v, Fy)] = E[v(Fy)].

IF(Y;gr, Fy) = —2 =97 ;Y((:f) a-) (1)

RIF(Y;q-, Fv) = q- + IF(Y; q-, Fy) (2)



RIF Regressions

RIF regression model: conditional expectation of the RIF E[RIF(Y; g-, Fy) | X]].
RIF regression: OLS estimation RIF(Y; q-, Fy) | Xi] = Brie X + €.

BriF corresponds to the effect of a marginal change in X on the unconditional
quantile of Y.

Necessary steps: Estimate quantiles g-(Y'), density fy(q-) (eg. by Kernel
estimation), calculate dummy variable 1(Y < g;) (trivial).



Distributions: Probability Density Function f(Y)

For a stochastic experiment with outcome variable Y, the probability density
function (PDF) gives the probability of a certain realization Y = y to be
observed.

(a) Dscrete (b) Continuous

Figure 3: Probability Density Functions of a Discrete and a Continuous Variable Y
N(0,1)



Distributions: Cumulative Density Function F(Y)

The cumulative density function (CDF) gives the probability that a random
variable realizes below a treshold level P(Y < y). It is 0 for the minimum and
1 for the maximum range of Y.

For observations it can be understood as the fraction of the population with
realizations below some observation.

(a) Dscrete (b) Continuous

Figure 4: Cumulative Density Functions of a Discrete and a Continuous Variable Y
N(0,1)



Joint Distributions

The joint distribution fx y(x,y) of two variables X, Y gives the probability of
observing two values X = x, Y = y at the same time.

5 =5

Figure 5: Wikipedia: “Many sample observations (black) are shown from a joint
probability distribution. The marginal densities are shown as well.”



Marginal Densities



Influence Functions

A functional v(Fy) projects from a function Fy to the space of real numbers R,
ie. v:F, = R, eg. the mean.

Hampel, 1968: The influence function gives the infinitesimal behavior of a
functional v.

One can have two distributions of the same class Fy and Gy (eg. one N(0,1)
and one N(1,1)).

Then there exists a mixing distribution that is t units away from Fy in the
direction of Gy: FY’FGV = (1 — t)Fy + tGy = t(Gy — Fy) + Fy.

im V(Freay) = v(Fy) _ Ov(Fy.ecy)
m = ‘t:O
10 t ot

- / IF(y;v. Fy) - d(Gy — Fy)(y) 3)




Recentered Influence Function

The von-Misés linear approximation of v(Fy :.¢,) — v(Fy):

W(Freoy) — v(Fv) = v(Fy) + / IF(y:v. Fy) - F(Gy — Fr)(y)

+r(t; v; Gy, Fy) (4)

Neutralize the “remainder term” r(.) (by setting Gy = A, and t = 1), for the
re-centered influence function RIF

RIF(y; v, Fy) = v(Fy) + / IF(s; v, Fy)dA,(s) = v(Fy) + IF(y; v, Fy) (5)

Key result: “the impact of a marginal change in the distribution of X on v(Fy)
can be obtained using the conditional expectation of the RIF(Y; v, Fy)". (Firpo
et.al., 2009, 957)



Calculating the RIF

RIF(Y:;qr, Fy) = qr + IF(Y; qr, Fv)
T-UY<g)

:q‘r+7 6

fv(q-) (©)

set.seed (1)
edu_m <- runif (500, 4, 16) + rnorm(500, 1, 0.5)
inc_m <- rnorm(500, 5*edu_m, 1 + 0.3*edu_m)
af_m <- approxfun(density(inc_m))
df _tmp <- data.frame(x = edu_m,
y = inc_m) %>%
mutate(rif01 = (0.1 - ifelse(y>quantile(inc_m, 0.1), 0, 1))/
af_m(quantile(inc_m, 0.1)),
rif05 = (0.5 - ifelse(y>quantile(inc_m, 0.5), 0, 1))/
af_m(quantile(inc_m, 0.5)),
rif09 = (0.9 - ifelse(y>quantile(inc_m, 0.9), 0, 1))/
af_m(quantile(inc_m, 0.9)))



Bivariate RIF
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RIF: OLS estimation

RIF(yi;qr, Fy) ~ a+ X{B + € 7)
__ ORIF(yi; q-, Fy)
p= R ) ®)

df _tmp %>%
Im(rif01 ~ x, data=.)
Call: Im(formula = rif01 ~ x, data = .)

Coefficients: (Intercept) x
-31.718 2.902



RIF: Coefficient Decomposition

> Same regression between two groups: different endowments and
coefficients (eg. women have more years of education, but smaller income
returns for each year).

» Oaxaca (1973) and Blinder (1973): Decompose effects by calculating
counterfactual distribution if group A had endowments of group B.

AY =Ya— VY5

AY = X}Ba — X5 s

AY = (Xa — Xs)'Bs + X5(Ba — Bs) + (Xa — X&) (B2 — Bs) (9)
» UQR estimated by OLS: Oaxaca-Blinder decomposition is trivial.

Interpretation of Coefficients is not.
» In surveys, re-weighting becomes crucial.
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