Lab 6: Unconditional Quantile Regression

 Econometrics Beyond Ordinary Least SquaresPatrick Mokre

WS 2020/2021

Unconditional Quantile Regression

Unconditional Quantiles: Quantiles of the overall distribution.

Figure 1: Conditional and Unconditional Quantiles

Conditional and Unconditional Quantile Regression Coefficients

CQR coefficients: Workers' benefit of transferring into public sector jobs.
UQR coefficients: Earnings increase if percentage of public sector workers increases.

Figure 2: Fournier, 2012, Fig 3: "Conditional and unconditional quantile regression estimates of the impact on earnings from working in the public sector"

UQR and Inequality

Changes in unconditional quantiles \Rightarrow retrieve changes in quantile ratios (eg. 80/20, 90/10).
Extend UQR to other distributional properties \Rightarrow retrieve changes in Gini coefficient, mean-median ratio.
In OLS $\hat{\beta}=E(Y \mid X=1)-E(Y \mid X=0)$, the conditional effect of transferring between groups, as well as $\hat{\beta}=\frac{\partial \mu(p)}{\partial p}$ with $p=\frac{\sum_{i}^{N} 1(X=1)}{\sum_{i}^{N} 1(X=1)+1(X=0)}$.
This does not hold for CQR, usually $\hat{\beta}_{\tau}=F_{Y}^{-1}(\tau \mid X=1)-F_{Y}^{-1}(\tau \mid X=$ $0) \neq \frac{\partial q_{\tau}(p)}{\partial p}=P\left(Y>q_{\tau} \mid X=1\right)-P\left(Y>q_{\tau} \mid X=0\right)$.

Influence Functions and Recentered Influence Functions

"The influence function IF $\left(Y ; v, F_{Y}\right)$ of a distributional statistic $v\left(F_{Y}\right)$ represents the influence of an individual observation on that distributional statistic." (Firpo et.al., 2009, 954)
Re-centered influence function RIF: $\operatorname{RIF}\left(Y ; v, F_{Y}\right)=v\left(F_{Y}\right)+I F\left(Y ; v, F_{Y}\right)$.
Note: $E\left[R I F\left(y ; v, F_{Y}\right)\right]=E\left[v\left(F_{Y}\right)\right]$.

$$
\begin{align*}
\operatorname{IF}\left(Y ; q_{\tau}, F_{Y}\right) & =\frac{\tau-1\left(Y \leq q_{\tau}\right)}{f_{Y}\left(q_{\tau}\right)} \tag{1}\\
\operatorname{RIF}\left(Y ; q_{\tau}, F_{Y}\right) & =q_{\tau}+\operatorname{IF}\left(Y ; q_{\tau}, F_{Y}\right) \tag{2}
\end{align*}
$$

RIF Regressions

RIF regression model: conditional expectation of the $\left.\operatorname{RIF} E\left[R I F\left(Y ; q_{\tau}, F_{Y}\right) \mid X\right]\right]$.
RIF regression: OLS estimation $\left.\operatorname{RIF}\left(Y ; q_{\tau}, F_{Y}\right) \mid X_{i}\right]=\beta_{R I F} X_{i}+\epsilon_{i}$.
$\hat{\beta}_{\text {RIF }}$ corresponds to the effect of a marginal change in X on the unconditional quantile of Y.

Necessary steps: Estimate quantiles $q_{\tau}(Y)$, density $f_{Y}\left(q_{\tau}\right)$ (eg. by Kernel estimation), calculate dummy variable $1\left(Y \leq q_{\tau}\right)$ (trivial).

Distributions: Probability Density Function f(Y)

For a stochastic experiment with outcome variable Y, the probability density function (PDF) gives the probability of a certain realization $Y=y$ to be observed.

Figure 3: Probability Density Functions of a Discrete and a Continuous Variable Y $N(0,1)$

Distributions: Cumulative Density Function F(Y)

The cumulative density function (CDF) gives the probability that a random variable realizes below a treshold level $P(Y<y)$. It is 0 for the minimum and 1 for the maximum range of Y.

For observations it can be understood as the fraction of the population with realizations below some observation.

Figure 4: Cumulative Density Functions of a Discrete and a Continuous Variable Y $N(0,1)$

Joint Distributions

The joint distribution $f_{X, Y}(x, y)$ of two variables X, Y gives the probability of observing two values $X=x, Y=y$ at the same time.

Figure 5: Wikipedia: "Many sample observations (black) are shown from a joint probability distribution. The marginal densities are shown as well."

Marginal Densities

Influence Functions

A functional $v\left(F_{Y}\right)$ projects from a function F_{Y} to the space of real numbers \mathbb{R}, ie. $v: F_{v} \rightarrow \mathbb{R}$, eg. the mean.

Hampel, 1968: The influence function gives the infinitesimal behavior of a functional v.

One can have two distributions of the same class F_{Y} and G_{Y} (eg. one $N(0,1)$ and one $N(1,1)$).
Then there exists a mixing distribution that is t units away from F_{Y} in the direction of $G_{Y}: F_{Y, t \cdot G_{Y}}=(1-t) F_{Y}+t G_{Y}=t\left(G_{Y}-F_{Y}\right)+F_{Y}$.

$$
\begin{align*}
\lim _{t \downarrow 0} & \frac{v\left(F_{Y, t \cdot G_{Y}}\right)-v\left(F_{Y}\right)}{t}=\left.\frac{\partial v\left(F_{Y, t \cdot G_{Y}}\right)}{\partial t}\right|_{t=0} \\
& =\int I F\left(y ; v, F_{Y}\right) \cdot d\left(G_{Y}-F_{Y}\right)(y) \tag{3}
\end{align*}
$$

Recentered Influence Function

The von-Misès linear approximation of $v\left(F_{Y, t \cdot G_{Y}}\right)-v\left(F_{Y}\right)$:

$$
\begin{align*}
& v\left(F_{Y, t \cdot G_{Y}}\right)-v\left(F_{Y}\right)=v\left(F_{Y}\right)+\int I F\left(y ; v, F_{Y}\right) \cdot f\left(G_{Y}-F_{Y}\right)(y) \\
& \quad+r\left(t ; v ; G_{Y}, F_{Y}\right) \tag{4}
\end{align*}
$$

Neutralize the "remainder term" $r($.$) (by setting G_{Y}=\Delta_{y}$ and $t=1$), for the re-centered influence function RIF

$$
\begin{equation*}
R I F\left(y ; v, F_{Y}\right)=v\left(F_{Y}\right)+\int I F\left(s ; v, F_{Y}\right) d \Delta_{y}(s)=v\left(F_{Y}\right)+I F\left(y ; v, F_{Y}\right) \tag{5}
\end{equation*}
$$

Key result: "the impact of a marginal change in the distribution of X on $v\left(F_{Y}\right)$ can be obtained using the conditional expectation of the $\operatorname{RIF}\left(Y ; v, F_{Y}\right)$ ". (Firpo et.al., 2009, 957)

Calculating the RIF

$$
\begin{align*}
\operatorname{RIF}\left(Y ; q_{\tau}, F_{Y}\right) & =q_{\tau}+I F\left(Y ; q_{\tau}, F_{Y}\right) \\
& =q_{\tau}+\frac{\tau-1\left(Y \leq q_{\tau}\right)}{f_{Y}\left(q_{\tau}\right)} \tag{6}
\end{align*}
$$

```
set.seed(1)
edu_m <- runif(500, 4, 16) + rnorm(500, 1, 0.5)
inc_m <- rnorm(500, 5*edu_m, 1 + 0.3*edu_m)
af_m <- approxfun(density(inc_m))
df_tmp <- data.frame(x = edu_m,
    y = inc_m) %>%
    mutate(rif01 = (0.1 - ifelse(y>quantile(inc_m, 0.1), 0, 1))/
            af_m(quantile(inc_m, 0.1)),
    rif05 = (0.5 - ifelse(y>quantile(inc_m, 0.5), 0, 1))/
        af_m(quantile(inc_m, 0.5)),
    rif09 = (0.9 - ifelse(y>quantile(inc_m, 0.9), 0, 1))/
        af_m(quantile(inc_m, 0.9)))
```


Bivariate RIF

variable

- rif01
- rif05

RIF: OLS estimation

$$
\begin{array}{r}
\operatorname{RIF}\left(y_{i} ; q_{\tau}, F_{Y}\right) \sim \alpha+X_{i}^{\prime} \beta+\epsilon_{i} \\
\beta=\frac{\partial R I F\left(y_{i} ; q_{\tau}, F_{Y}\right)}{\partial X_{i}} \tag{8}
\end{array}
$$

```
df_tmp %>%
    lm(rif01 ~ x, data=.)
```

Call: Im (formula $=$ rif01 $\sim x$, data $=$.)
Coefficients: (Intercept) \times
-31.718 2.902

RIF: Coefficient Decomposition

- Same regression between two groups: different endowments and coefficients (eg. women have more years of education, but smaller income returns for each year).
- Oaxaca (1973) and Blinder (1973): Decompose effects by calculating counterfactual distribution if group A had endowments of group B.

$$
\begin{align*}
& \Delta \bar{Y}=\bar{Y}_{A}-\bar{Y}_{B} \\
& \Delta \bar{Y}=\bar{X}_{A}^{\prime} \hat{\beta}_{A}-\bar{X}_{B}^{\prime} \hat{\beta}_{B} \\
& \Delta \bar{Y}=\left(\bar{X}_{A}-\bar{X}_{B}\right)^{\prime} \hat{\beta}_{B}+\bar{X}_{B}^{\prime}\left(\hat{\beta}_{A}-\hat{\beta}_{B}\right)+\left(\bar{X}_{A}-\bar{X}_{B}\right)^{\prime}\left(\hat{\beta}_{A}-\hat{\beta}_{B}\right) \tag{9}
\end{align*}
$$

- UQR estimated by OLS: Oaxaca-Blinder decomposition is trivial.
- Interpretation of Coefficients is not.
- In surveys, re-weighting becomes crucial.

