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Recapitulation

▶ Discrete Choice Modeling: LOGIT, PROBIT, TOBIT, Heckman
▶ Dealing with Endogeneity: Instrumental Variables (IV)
▶ Static Panel Data
▶ Instrumental Variables in Dynamic Panel Data: Anderson-Hsiao, Arellano-Bond,

Arellano-Bover
▶ Seemingly Unrelated Regression (SUR)
▶ Auto-Regressive Distributed Lag (ARDL) and Error Correction Modeling (ECM)



Time Series Modeling

Auto-Regressive and Moving Average processes are the basis of dynamic econometric
relationships.

They are sometimes, but not always, exchangeable concepts.

Naturally they imply a closer look on the independence assumption of the error terms
over time.

The most basic macroeconometric (i.e. time series) processes are univariate and linear.

𝑋𝑡 = 𝑓(𝑋𝑡−1,𝑋𝑡−2,...,𝜖𝑡
) = 𝛿 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2... + 𝜖𝑡 (1)

Univariate modeling is often inappropriate in economic application, but a necessary (or
at least very useful) building block for understanding time-series econometrics.



White Noise

A process with zero mean, which is homoskedastic and non-autoregressive is called
white noise.

𝐸[𝜖𝑡] = 0
𝐸[𝜖′

𝑡𝜖𝑡] = 𝜎2
𝜖 < ∞ ∀𝑡 ∈ 𝑇

𝐸[𝜖𝑠𝜖𝑡] = 0 ∀𝑠 ≠ 𝑡

White noise processes can nevertheless change over time in distribution or show
non-linear and higher moment dependence.



Martingale Processes

A Martingale is a stochastic sequence where the conditional expectation of the next
observation is the current expectation (Fuller, 1996, “Introduction to statistical time
series”, 234f).

𝐸(∣ 𝑋𝑛 ∣) < ∞
𝐸(𝑋𝑛+1 𝑚𝑖𝑑𝑋1, ..., 𝑋𝑛) = 𝑋𝑛

A Martingale can also be defined with respect to another sequence, ie. 𝑌 is a
Martingale to 𝑋.

𝐸(∣ 𝑌𝑛 ∣) < ∞
𝐸(𝑌𝑛+1 ∣ 𝑋𝑎, ..., 𝑋𝑛) = 𝑋𝑛



Martingales and White Noise

A process is white noise if we cannot predict the next observation.

𝐸[𝑍𝑡] = 0
𝐸[𝑍𝑡, 𝑍𝑡+𝑗] = 0∀𝑗 ≠ 0

Not every white noise process is a Martingale: If you flip a fair coin and it lands on
“head” you would not expect the next flip to land on “head” again.

Not every Martingale is white noise: Keep in mind the expected value of a white noise
process is always zero.

However, a Martingale is useful to describe the differences between observations of a
white noise process Δ𝑌𝑛 = 𝑌𝑛 − 𝑌𝑛−1 when 𝐸[Δ𝑡𝑌 ∣ 𝑌1, ..., 𝑌𝑛−𝑞] = 0. Then we can
apply the central limits theorem for Martingales for deriving appropriate estimators.



Simple AR(1) Process

𝑋𝑡 = 𝛿 + 𝜙1𝑋𝑡−1 + 𝜖𝑡

With 𝜖𝑡 a white noise process and |𝜙1| < 1 is a first-order autoregressive process.

It can either be intepreted as a stochastic rule for 𝑡 ∈ 𝑇 or as a law of motion for
𝑡 ∈ ℤ. For the latter interpretation one assumes the process has started in the infinite
past, which is more convenient and also never true for economic processes.



Simple AR(1) Process: Properties

The mean of the infinite-past AR(1) process 𝜇 = 𝐸[𝑋𝑡] is not dependent on 𝑡, and 𝜖𝑡
is white noise, i.e. 𝐸[𝜖𝑡] = 0.

𝐸[𝑋𝑡] = 𝐸[𝛿 + 𝜙1𝑋𝑡−1 + 𝜖𝑡]
𝜇 = 𝛿 + 𝜙1𝜇

𝜇 = 𝛿
1 − 𝜙1

(2)

Let 𝑥𝑡 = 𝑋𝑡 − 𝜇 (mean difference) and assume 𝑉 [𝑥𝑡] = 𝑉 [𝑥𝑡−1] (homoskedasticity).

𝑉 [𝑥𝑡] = 𝑉 [𝜙1𝑥𝑡−1] + 𝑉 [𝜖𝑡]
= 𝜙2

1𝑉 [𝑥𝑡] + 𝜎2
𝜖

𝑉 [𝑥𝑡] = 𝜎2
𝜖

1 − 𝜙2
1

(3)



Simple MA(1) Process

𝑋𝑡 = 𝜇 + 𝜖𝑡 + 𝜃𝜖𝑡−1 (4)

Let 𝜖𝑡 be a white noise process and 𝜃 ∈ [−1, 1] (usually).

The statistical properties are simple:

𝐸[𝑋𝑡] = 𝜇
𝑉 [𝑋𝑡] = (1 + 𝜃2)𝜎2

𝜖



AR(1) as an infinite-order MA process

Apply continued substitution to the mean difference formulation of the AR(1) process
𝑥𝑡 = 𝑋 − 𝑡 − 𝜇.

𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜖𝑡

= 𝜙𝑘
1𝑥𝑡−𝑘 +

𝑘−1
∑
𝑗=0

𝜙𝑗
1𝜖𝑡−𝑗

=
∞

∑
𝑗=0

𝜙𝑗
1𝜖𝑡−𝑗 (5)



Reminder: Stationarity

A process is called stationary if and only if its statistical properties are the same over
time. In other words, the joint distribution of (𝑋𝑡, 𝑋𝑡−1, ..., 𝑋𝑡−𝑠) and
(𝑋𝑡−𝑗, 𝑋𝑡−𝑗−1, ..., 𝑋𝑡−𝑗−𝑠) are the same ∀𝑡, 𝑗, 𝑠.

For many econometrical applications it is sufficient to show weak stationarity
(covariance stationarity), i.e. the first two moments of the joint distribution are
unaffected by time shifts.

This is also simpler to reject or not reject than equality in all statistical properties.

𝐸[𝑋𝑡] = 𝜇 < ∞ ∀𝑡 ∈ 𝑇
𝑉 [𝑋𝑡] = 𝜎2

𝑋 = 𝛾(0) = 𝛾0 < ∞ ∀𝑡 ∈ 𝑇
𝐶𝑜𝑣[𝑋𝑡, 𝑋𝑡−𝑘] = 𝛾(𝑘) = 𝛾𝑘 < ∞ ∀𝑡, 𝑠 ∈ 𝑇



Auto-Covariance and Auto-Correlation

If a process is covariance stationary, one can define the auto-covariance function of
order k 𝛾(𝑘) = 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑘) = 𝛾𝑘, where 𝛾 is a function 𝛾 ∶ ℤ → ℝ.

Correspondingly, one can define the auto-correlation function (ACF) 𝜌 ∶ ℤ → [−1, 1].
𝜌(𝑘) = 𝐶𝑜𝑣(𝑋𝑡,𝑋𝑡−𝑘)

𝑉 [𝑌𝑡 ] = 𝛾𝑘
𝛾0

.

A stationary AR(1) process is described by its expected value, its variance and its
auto-correlation function, which capture the most important aspects of its dynamics
over time.

𝑋𝑡 = 𝛿 + 𝜙𝑋𝑡−1 + 𝜖𝑡

𝜌𝑘 = 𝜙𝑘 (6)

For the MA(1) process, the ACF plays a similarily important role.

𝑋𝑡 = 𝜇 + 𝜖𝑡 + 𝜃𝜖𝑡−1

𝜌1 = 𝜃
1 + 𝜃2 (7)

𝜌𝑘 = 0 ∀𝑘 > 1 (8)



Stationarity of AR

▶ White Noise is stationary (≡ 𝜙 = 0)
▶ AR(1) with |𝜙| ≥ 1 are not stationary
▶ AR(1) with |𝜙| < 1 are not generally stationary for arbitrary starting values, but

become more stationary over time (asymptotical stationarity)
▶ AR(1) with |𝜙| < 1 are stationary if the process started in the infinite past, or if

the first distribution is drawn from a specific distribution.



Lag Operator

The lag operator simplifies the relationship between two observations in a time series.
Most of the time, it can be treated like a constant. It leaves constants unaffected.

𝐿𝑥𝑡 = 𝑥𝑡−1
𝐿2𝑥𝑡 = 𝐿(𝐿𝑥𝑡) = 𝑥𝑡−2
𝐿𝑝𝑦𝑡 = 𝑦𝑡−𝑝 (9)

ARMA models can be written in terms of the lag operator.

𝑥𝑡 = 𝜙𝑦𝑡−1 + 𝜖𝑡
(1 − 𝜙𝐿)𝑥𝑡 = 𝜖𝑡 (10)

More general 𝜙(𝐿) is a lag polynomial for an AR process with
𝜙(𝐿) = 1 − 𝜙1𝐿 − ... − 𝜙𝑝𝐿𝑝. The polynomial for an MA process is written as
𝜃(𝐿) = 1 + 𝜃1𝐿 + ... + 𝜃𝑞𝐿𝑞.

The roots of the characteristical lag polynomial is the subject of most unit root tests.



Invertibility
Note how the AR polynomial has minus signs, while the MA polynomial has plus signs.
If a 𝜃−1(𝐿) exists, one can rewrite the MA polynomial as an infinite-order AR process.

𝑥𝑡 = 𝜃(𝐿)𝜖𝑡
𝜃−1(𝐿)𝑥𝑡 = 𝜖𝑡

(11)

For the infinite AR representation to exist for an MA process, 𝜃 has to be invertible,
i.e. |𝜃| < 1.

Generally, one can find find values 𝜙 such that

(1 − 𝜃1𝐿 − 𝜃2𝐿2) = (1 − 𝜙1𝐿)(1 − 𝜙2𝐿)

For the second-order case, 𝜙 are found by solving 𝜙1 + 𝜙2 = 𝜃1 and −𝜙1𝜙2 = 𝜃2. This
gives the characteristical equation with roots z. for the process to be invertible, both
roots need to be larger than 0. |𝑧| = 1 is called a unit root.

(1 − 𝜙1𝑧)(1 − 𝜙2𝑧) = 0 (12)



Wold Theorem
Wold’s (1938) theorem states that any trend stationary time series can be
decomposed into the sum of deterministic, and thus predictable, and purely stochastic
(non-predictable) elements.

𝑦𝑡 = 𝑑𝑡 +
∞

∑
𝑖

𝛼𝑖𝜖𝑡−𝑖

(13)

where 𝛼0 = 1 and ∑∞
𝑖=0 𝛼2

𝑖 < 𝐾 < ∞. 𝑑𝑡 is deterministic while 𝜖𝑡 is serially
uncorrelated with finite expected value and variance.

Wold’s theorem allows for the linear estimation of time series processes.

Every ARMA process can be forecast (approximated) by a Wold polynomial 𝜓(𝐿).

𝜓(𝐿) = 𝜃(𝐿)
𝜙(𝐿)

𝑥𝑡 =
∞

∑
𝑖=0

𝜓𝑖𝜖𝑡−𝑖

≈ 𝜃(𝐿)
𝜙(𝐿) 𝑢𝑡



Forecasting: Terminology

Many use prediction and forecast synonymously. Hoewer, Clements and Hendry argue
that predictability is a theoretical notion, while forecastability describes when
predictability can be exploited in practice.

Three types of forecast:

1 Magical: no recognizable relationship between cause and effect in theory or model

2 Subjective: Judgemental forecast, for example forecasting recession probability by
averaging “business climate surveys”.

3 Objective: Purely econometric forecasts.



Forecasting: Single-Exponential Smoothing/ARIMA(0,1,1) 1

ARMA and ARIMA models translate into some popular forecasting methods
(e.g. single exponential smoothing or Holt-Winter forecasting).

Consider single exponential smoothing (a filtering method).

̂𝑥𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼) ̂𝑥𝑡−1 𝛼 ∈ (0, 1) (14)

= 𝛼
𝑡−1
∑
𝑗=0

(1 − 𝛼)𝑗𝑥𝑡−𝑗 + (1 − 𝛼)𝑡 ̂𝑥0

̂𝑥𝑡 = ̂𝑥𝑡−1 + 𝛼(𝑥𝑡 − ̂𝑥𝑡−1) Error Correction Form
(15)

The out-of-sample forecast is then performes by flat extrapolation,
i.e. ̂𝑥𝑁 (1) = ̂𝑥𝑁 (2) = ....



Forecasting: Single-Exponential Smoothing/ARIMA(0,1,1) 2

SES is equivalent to basing forecasts on ARIMA(0,1,1), i.e. MA(1) on the first
difference.

𝑥𝑡 = 𝑥𝑡−1 + 𝜖𝑡 + 𝜃𝜖𝑡−1
̂𝑥𝑡 = 𝑥𝑡−1 + 𝜃(𝑥𝑡−1 + ̂𝑥𝑡−1)
Define 𝛼 − 1 = 𝜃

̂𝑥𝑡 = 𝛼𝑥𝑡−1 + (1 − 𝛼) ̂𝑥𝑡−1 (16)



Forecasting: Gardner & McKenzie’s approach to Holt’s linear trend
method

Define trend (or slope) 𝑇 and local level 𝐿 equations, as in Holt:

𝐿𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1)
𝑇𝑡 = 𝛾(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛾)𝑇𝑡−1

The resulting forecast in ℎ steps is given by

̂𝑥𝑁 (ℎ) = 𝐿𝑛 + ℎ𝑇𝑛
s.t. ̂𝑥𝑡−1(1) = 𝐿𝑡−1 + 𝑇𝑡−1 = ̂𝑥𝑡 (17)

(18)

Gardner & McKenzie’s ARIMA(1,1,2) re-formulation:

̂𝑥𝑁 (ℎ) = 𝐿𝑛 + (
ℎ

∑
𝑗

𝜙𝑗)𝑇𝑛 (19)



Forecasting: Direct ARMA Forecasting

Suppose an ARMA(2,2) with known parameters 𝜙, 𝜃 generates a data vector
(𝑥1, ..., 𝑥𝑇 ). This gives us the conditional expected value for the first forecast. Let 𝕀𝑡
be the available information set at time 𝑡.

𝐸[𝑋𝑡+1 ∣ 𝕀𝑡] = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝜃1𝜖1 + 𝜃2𝜖2 + 𝐸(𝜖𝑡 ∣ 𝕀𝑡)

Note that 𝜖 is a white noise process (⇒ 𝐸[𝜖] = 0).

�̂�𝑡(1) = 𝜙1𝑋𝑡 + 𝜙2𝑋𝑡−1 + 𝜃1𝜖𝑡 + 𝜃2𝜖𝑡−1

In practice, parameters are estimated, 𝑝 and 𝑞 are determined empirically, and 𝜖𝑡 must
be estimated, and these estimates are plugged in.

Forecasts for time periods further in the future will be derived iteratively.



Forecasting: Model Selection 1

The selection problem can be decomposed in two questions: the family of processes
(e.g. ARMA) and the specifiation of the process (e.g. 𝑝 = 2, 𝑞 = 0).

Often, at least the first question will be answered with some respect to economic
theory.

Sometimes, model-free forecasting is preferred. Totally model- and parameter-free
forecasts usually out-perform parametric forecasts, however at the danger of
overfitting (e.g. Gaussian processes, k-nearest-neighbor machine learning, …).

However, model-free forecasting provides little value for economic questions.



Forecasting: Model Selection 2

Box and Jenkins propose model selection upon visual selection of observational ACF
and partial ACF plots.

The sample autocorrelation function 𝜌𝑘 should be insignificant for 𝑘 > 𝑞 in MA(q)
processes.

For AR(p) models, the sample ACF should decay geometrically, which is of little help
for model selection. However, the partial auto-correlation function should be
significant only for lags 𝑘 ≤ 𝑞. Colloquially, partial correlation refers to correlation
conditional on the relationship with larger lags.



Forecasting: Model Selection

A different (but not mutually exclusive approach) is applying information criteria and
goodness-of-fit statistics.

Note: It is functionally different to apply information criteria to the estimation, or to
apply goodness-of-fit to predictions (conditional on information you already have).

▶ log AIC: = 2 𝑘
𝑇 − 2𝑙𝑜𝑔(�̂�) = 𝑙𝑜𝑔(𝜎2) + 2 𝑝+𝑞+1

𝑇 .
▶ log BIC: = 𝑙𝑜𝑔(𝑇 )𝑘 + 2𝑙𝑜𝑔(�̂�) = 𝑙𝑜𝑔(𝜎2) + 𝑝+𝑞+1

𝑇 𝑙𝑜𝑔(𝑇 ).
▶ Mean Squared Error MSE: = ∑𝑇

𝑡 𝑒2
𝑡

𝑇 −𝑝−𝑞 .


