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Econometrics

▶ Extracting Relationships from Data (Correlation Analysis).
▶ Using assumptions about the data generating process to

reveal data structure.
▶ Use Abstraction to find patterns not visible to the open eye.
▶ Frequentist econometrics is built around hypothesis testing
▶ Is there a “data generating process”?
▶ How would you describe the result of a hypothesis test?
▶ Is hypothesis testing necessary for theoretical advancement?



Econometrics: Terminology

▶ probability and probability distribution
▶ linear relationship
▶ regression
▶ ordinary least squares
▶ generalized least squares
▶ homoskedasticity
▶ multicollinearity
▶ endogeneity
▶ maximum likelihood
▶ hypothesis
▶ degrees of freedom
▶ fat tail



Advanced Econometrics 1

Learning Goals:

▶ Understanding of panel data analysis
▶ Ability to apply panel data analysis to research questions
▶ Confidence to read and comment on quantitative work
▶ Possibly ideas for a PhD chapter?

Your expectations and learning goals?

▶ What can you not do, but know it exists, and want to know
after this term?

▶ How important is this class for your research projects?
▶ Do you think Econometrics should be an obligatory course?
▶ How would you want to teach this class?



Linear Relationships
Consider a linear approximation for some observations 𝑦1, ..., 𝑦𝑛
with 𝑥1, ..., 𝑥𝑘 vectors of length n.

𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑘𝑥𝑘

Then the difference between observations and approximation can
be written as follows.

𝑦𝑖 − 𝑥′
𝑖𝛽

Then a loss function can be used to minimize different aspects of
the difference between observations and approximations. In OLS,
the function used is squared deviation.

𝑆( ̂𝛽) =
𝑛

∑
𝑖

(𝑦𝑖 − 𝑥′
𝑖 ̂𝛽)2



Solving the oridnary least squares problem

To find a vector ̂𝛽𝑂𝐿𝑆 that minimizes the quadratic loss function,
one can derive K First-Order-Conditions by deriving 𝑆( ̂𝛽) with
respect to ̂𝛽

𝜕𝑆( ̂𝛽)
𝜕 ̂𝛽

= −2
𝑁

∑
𝑖

𝑥𝑖(𝑦𝑖 − 𝑥′
𝑖 ̂𝛽) = 0

𝑁
∑

𝑖
[𝑥′

𝑖𝑥𝑖] ̂𝛽 =
𝑁

∑
𝑖

𝑥𝑖𝑦𝑖

̂𝛽𝑂𝐿𝑆 = [
𝑁

∑
𝑖

𝑥′
𝑖𝑥𝑖]−1

𝑁
∑

𝑖
𝑥𝑖𝑦𝑖

= (𝑋′𝑋)−1𝑋′𝑌



Best linear unbiased estimator (BLUE)

̂𝛽𝑂𝐿𝑆 is the best linear unbiased estimator in a linear relationship
(and ̂𝑦 = 𝑥′

𝑖 ̂𝛽𝑂𝐿𝑆 the best linear approximation) under certain
assumptions or conditions about the structure of the covariates
𝑏1, ..., 𝑏𝑘 and the error term vector 𝑒 = 𝑦 − 𝑥′ ̂𝛽𝑂𝐿𝑆

▶ How are these conditions called?
▶ What are these conditions?



Gauss-Markov conditions

The standard Gauss-markov conditions are:

▶ 𝐸𝜖𝑖 = 0 ∀𝑖 ∈ 𝑁
▶ 𝜖1, ..., 𝜖𝑛 and 𝑥1, ..., 𝑥𝑛 are independent
▶ 𝑉 𝑎𝑟(𝜖𝑖) = 𝜎2 ∀𝑖 ∈ 𝑁
▶ 𝑐𝑜𝑣(𝜖𝑖, 𝜖𝑗) = 0 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑗 ≠ 𝑖

From assumptions 1, 3 and 4 follows that the error term is
independent of the observed covariates, 𝐸(𝜖 ∣ 𝑋) = 𝐸(𝜖) = 0 and
𝑉 𝑎𝑟𝜖 ∣ 𝑋 = 𝑉 (𝜖) = 𝜎2𝐼𝑁 (where 𝐼𝑁 is an N-dimensional diagonal
identity matrix).



Gauss Markov conditions 2

̂𝛽𝑂𝐿𝑆 is unbiased because 𝐸( ̂𝛽𝑂𝐿𝑆) = 𝐸((𝑋′𝑋)−1𝑋′𝑌 ) =
𝐸(𝛽 + (𝑋′𝑋)−1𝑋′𝜖) = 𝛽 + 𝐸((𝑋′𝑋)−1𝑋′𝜖) = 𝛽 + 0 = 𝛽. Note
that the estimator is unbiased even if heteroskedasticity or
autocorrelation are present.
Clearly, 𝑉 𝑎𝑟( ̂𝛽𝑂𝐿𝑆) can be read as a measure of how likely it is
that the estimator is a bad guess. The variance is deterministic in
X, and under assumptions 2, 3 and 4, ̂𝛽𝑂𝐿𝑆 is efficient, i.e. the
best estimator.

𝑉 𝑎𝑟( ̂𝛽𝑂𝐿𝑆) = 𝐸( ̂𝛽𝑂𝐿𝑆 − 𝛽)( ̂𝛽𝑂𝐿𝑆 − 𝛽) =
𝐸((𝑋′𝑋)−1𝑋′𝜖𝜖′𝑋(𝑋′𝑋)−1) = 𝐸((𝑋′𝑋)−1𝑋′(𝜎2𝐼𝑁)𝑋(𝑋′𝑋)−1) =
𝜎2(𝑋′𝑋)−1



Distribution of the error terms

Assumptions 1, 3 and 4 can be replaced by assuming that errors
are independently Gaussian Normal distributed: - 𝜖 ∼ 𝑁(0, 𝜎2).
This implies that 𝑦𝑖 ∣ 𝑥𝑖 is also Gaussian Normal distributed.

In summary, one can say that ̂𝛽𝑂𝐿𝑆 ∼ 𝑁(𝛽, 𝜎2(𝑋′𝑋)−1).
How does one estimate how well a model fits the data?



Goodness of Fit

The most popular measure of the goodness of fit in an OLS model
is 𝑅2, the proportion of explained variance to observed variance in
the model.

𝑅2 =
̂𝑉 ( ̂𝑦)
̂𝑉 (𝑦)

= 1/(𝑁 − 1) ∑𝑁
𝑖 ( ̂𝑦 − ̄𝑦)2

1/(𝑁 − 1) ∑𝑁
𝑖 (𝑦 − ̄𝑦)2

Since 𝑦𝑖 = ̂𝑦𝑖 + 𝜖𝑖 and ∑𝑁
𝑖 𝑦𝑖𝜖𝑖 = 0, it follows that

̂𝑉 (𝑦𝑖) = ̂𝑉 ( ̂𝑦𝑖) + ̂𝑉 (𝜖𝑖). Then 𝑅2 can be calculated from observed
values only.

𝑅2 = 1 −
̂𝑉 (𝜖𝑖)
̂𝑉 (𝑦𝑖)

= 1 − 1/(𝑁 − 1) ∑𝑁
𝑖 𝜖2

𝑖

1/(𝑁 − 1) ∑𝑁
𝑖 (𝑦𝑖 − ̄𝑦)2



Hypothesis Testing

A hypothesis is a sentence. A “supposition or proposed explanation
made on the basis of limited evidence as a starting point for
further investigation.”. Most econometric results are hypotheses.
In hypothesis testing, one measures how likely it is for data from
the same time and place to look very different. Necessary
assumptions for this are the existing of a true data generating
process and possible infinite repition data generation.



Hypothesis Testing 2: Significant Coefficients

The OLS results about 𝛽 are hypotheses. In the simplest case, one
wants to test if 𝛽𝑘 is different from zero. Let 𝑐𝑘𝑘 be the k-th entry
in the diagonal of (𝑋′𝑋)−1 and ̂𝛽𝑂𝐿𝑆,𝑘 ∼ 𝑁(𝛽𝑘, 𝜎2𝑐𝑘𝑘).
Construct a variable z, which follows a Gaussian Normal
distribution.

𝑧 =
̂𝛽 − 𝛽

𝜎√𝑐𝑘𝑘

However, 𝜎 is unknown, but there exists an unbiased estimator
𝑠2 = 1

𝑁−𝐾 ∑𝑁
𝑖 𝑒2

𝑖 which is independent of ̂𝛽. Furthermore,
(𝑁−𝐾)𝑠2

𝜎2 ∼ 𝜒2
𝑁−𝐾.



Hypothesis Testing 3: Significant Coefficients

𝑡 =
̂𝛽 − 𝛽

𝑠√𝑐𝑘𝑘

t is the ratio of a Gaussian Normal and a 𝜒2 variable, and thus
follows a Student-t distribution with (N - K) degrees of freedom.
The Student-t distribution looks a lot like the Gaussian Normal for
large degrees of freedom, but has fatter tails.
Note that hypothesis testing using the t-distribution is testing
under the assumption that the null hypothesis is correct.
Why are we interested in the distribution of t? What are
degrees of freedom?



Degrees of Freedom

The degrees of freedom (DF) indicate the number of independent
values that can vary in an analysis without breaking any
constraints. it increases in independent information you can use for
parameter estimation, and decreases in parameters you have to
estimate due to your modeling choices.
In frequentist statistics, hypothesis testing is based in the
assumption that coefficient estimates (such as ̂𝛽 follow some
distribution, where the shape is co-determined by the degrees of
freedom (Student T, 𝜒2, …).
For low degrees of freedom, these distributions become very
narrow, making hypothesis testing difficult. Coefficient estimates
become unreliable, and hypothesis tests lose testing power.



Joint Hypothesis Testing
A more general Null hypothesis is that J out of K coefficients are
equal to zero. The standard application is to test if all coefficients
apart from the intercept are zero.

𝐻0 ∶ 𝛽𝐾−𝐽+1 = ... = 𝛽𝐾 = 0

The test is implemented by comparing the sum of residuals of the
model 𝑆1 and a restricted model, in which the covariates we
assume to be zero are not even implemented, 𝑆0. Under the Null,
𝑆0 − 𝑆1 = 0, and 𝑆0−𝑆1

𝜎2 ∼ 𝜒2
𝐽 .

𝑓 = (𝑆0 − 𝑆1)/𝐽
𝑆1/(𝑁 − 𝐾)

= (𝑅2
0 − 𝑅2

1)/𝐽
(1 − 𝑅2

1)(𝑁 − 𝐾)
𝑓 is F-distributed with 𝑁 − 𝐾 degrees of freedom and for a given
significance level.



Generalized Least Squares

When the 5 Gauss-markov Conditions do not hold, ̂𝛽𝑂𝐿𝑆 is no
longer BLUE.
GLS gives an estimator that reduces to ̂𝛽𝑂𝐿𝑆 when the
Gauss-Markov conditions are satisfied but still holds as BLUE
otherwise.
The relevant conditions are summarized as:

𝐸(𝜖 ∣ 𝑋) = 𝐸(𝜖) = 0
𝑉 (𝜖 ∣ 𝑋) = 𝑉 (𝜖) = 𝜎2𝐼



Generalized Least Squares 2

Both Autocorrelation and Heteroskedasticity imply that the
variance condition no longer holds and can be re-written as an
error-correlation matrix Ψ.

𝑉 (𝜖 ∣ 𝑋) = 𝜎2Ψ
𝑉 ( ̂𝛽) = 𝜎2(𝑋′𝑋)−1𝑋′Ψ𝑋(𝑋′𝑋)−1

If Ψ = 𝐼 , this reduces to 𝑉 ( ̂𝛽) = 𝜎2(𝑋′𝑋)−1



Generalized Least Squares 3

The intuition behind the generalized least squares (GLS) procedure
is have a model which does not satisfy Gauss Markov 1-4 and
transform it such that it does.
One can define a square and non-singular matrix 𝑃 for which:

Ψ−1 = 𝑃 ′𝑃
Ψ = (𝑃 ′𝑃)−1 = 𝑃 −1(𝑃 ′)−1

𝑃Ψ𝑃 ′ = 𝑃𝑃 −1(𝑃 ′)−1𝑃 ′ = 𝐼

For this (not necessarily unique) matrix P for which 𝑃𝜖 satisfies
the Gauss-Markov conditions.

𝐸(𝑃𝜖 ∣ 𝑋) = 𝑃𝐸(𝜖 ∣ 𝑋) = 0
𝑉 (𝑃𝜖 ∣ 𝑋) = 𝑃𝑉 (𝜖 ∣ 𝑋)𝑃 ′ = 𝜎2𝑃Ψ𝑃 ′ = 𝜎2𝐼



Generalized Least Squares 4

One can use the GLS transformation on the model to retrieve
̂𝛽𝐺𝐿𝑆.

𝑃𝑦 = 𝑃𝑋𝛽 + 𝑃𝜖
𝑦∗ = 𝑋∗𝛽 + 𝜖∗

̂𝛽𝐺𝐿𝑆 = (𝑋∗′𝑋)−1𝑋∗′𝑦∗ = (𝑋′Ψ𝑋)−1𝑋′Ψ𝑦

In this form, the exact matrix 𝑃 is irrelevant, however the choice of
Ψ−1 is crucial. When Ψ is known, the modle is deterministic,
otherwise it has to be estimated.



Summary

▶ What is Econometrics?
▶ what is a probability distribution?
▶ What are the learning goals in this class?
▶ What does BLUE stand for?
▶ Define homoskedasticity, consistency and efficiency.
▶ What is the intuition behind an 𝑅2 statistic?
▶ When are Student-t and F-distributions of use?


