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Limited Dependent Variables

▶ What exactly does an OLS estimation coefficient capture?
▶ Under which technical conditions is that estimation BLUE?
▶ Under which conditions does that kind of modeling make sense intuitively/in a

modeling context?
▶ Bonus: What is the difference between consistency and unbiasedness?



Limited Dependent Variables 2

̂𝛽𝑂𝐿𝑆 is an approximation to 𝜕𝑦
𝜕𝑋 . Inituitively, this makes the most sense with a

continuous dependent variable and covariates.
̂𝛽𝑂𝐿𝑆 is consistent and efficient und the Gauss-Markov conditions.

▶ 𝐸𝜖𝑖 = 0 ∀𝑖 ∈ 𝑁
▶ 𝜖1, ..., 𝜖𝑛 and 𝑥1, ..., 𝑥𝑛 are independent
▶ 𝑉 𝑎𝑟(𝜖𝑖) = 𝜎2 ∀𝑖 ∈ 𝑁
▶ 𝑐𝑜𝑣(𝜖𝑖, 𝜖𝑗) = 0 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑗 ≠ 𝑖



Limited Dependent Variables 3

Often microeconomic data is presented in discrete or discrete mixed continuous form.

Problem 1: If one estimates binary data using OLS, 𝑥′𝛽 must be read as a probability,
which by definition can only be between 0 and 1. This is only possible if either x or 𝛽
are artificially restricted.

Problem 2: Usually the error term is not normally distributed and suffers from
heteroskedasticity:

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖) = 𝑥′
𝑖𝛽

𝑃(𝜖 = −𝑥′
𝑖𝛽 ∣ 𝑥𝑖) = 𝑃(𝑦𝑖 = 0 ∣ 𝑥𝑖) = 1 − 𝑥′

𝑖𝛽
𝑃(𝜖 = 1 − 𝑥′

𝑖𝛽 ∣ 𝑥𝑖) = 𝑥′
𝑖𝛽

⇒ 𝑉 (𝜖 ∣ 𝑥𝑖) = 𝑥′
𝑖𝛽(1 − 𝑥′

𝑖𝛽) ≠ 𝑉 (𝜖)

Clearly, a bipolar distribution is not Gaussian Normal, and the variance depends on the
value of the covariates.



Non-Gaussian Error Distribution

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

0

1

2

3

−2 −1 0 1 2
error

de
ns

ity



Binary Choice Modeling

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖) = 𝐺(𝑥𝑖, 𝛽)
If you choose for the function 𝐺(𝑥𝑖, 𝛽) the Gaussian Normal distribution Φ(𝑥′

𝑖𝛽), this is
called a Probit model:

𝜕Φ(𝑥′
𝑖𝛽)

𝜕𝑥𝑖𝑘
= 𝜙(𝑥′

𝑖𝛽)𝛽𝑘

The logistical distribution 𝑒𝑥𝑝(𝑥′
𝑖𝛽)

1+𝑒𝑥𝑝(𝑥′
𝑖𝛽) gives a Logit model.

𝜕𝐿(𝑥′
𝑖𝛽)

𝜕𝑥𝑖𝑘
= 𝑒𝑥𝑝(𝑥′

𝑖𝛽)
(1 + 𝑒𝑥𝑝(𝑥′

𝑖𝛽))2 𝛽𝑘



Normal and Logit Link Function
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Latent Variable Models

One can also model a bivariate outcome as the result of a censoring process. For this,
one makes behavioural assumptions on why a variable never materializes.

Let 𝑦∗
𝑖 be an underlying (latent) variable. As an example, think of a reservation wage:

If a person is offered less than $ 1500, they may not even enter the labor market.

𝑦∗
𝑖 = 𝑥′

𝑖𝛽 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2)
𝑦𝑖 = 1 𝑖𝑓 𝑦∗

𝑖 > 0
𝑦𝑖 = 0 𝑖𝑓 𝑦∗

𝑖 < 0



Latent Variable Models

The model can be estimated using a simple likelihood formulation.

𝐿(𝛽) =
𝑁

∏
𝑖

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖; 𝛽)𝑦𝑖 𝑃(𝑦𝑖 = 0 ∣ 𝑥𝑖; 𝛽)1−𝑦𝑖

Since the natural logarithm is a monotonous function, the value 𝛽 that maximizes the
likelihood also maximizes the log-likelihood 𝐿𝐿(𝛽). Since Log-Likelhoods can be
summed up rather than multiplied the procedure becomes computationally more
efficient and does less often run into problems with floating digits.

𝐿𝐿(𝛽) =
𝑁

∑
𝑖

𝑦𝑖𝑙𝑜𝑔(𝑃 (𝑦𝑖 = 1 ∣ 𝑥𝑖; 𝛽)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(𝑃 (𝑦𝑖 = 0 ∣ 𝑥𝑖; 𝛽))

Both Logit and Probit models can be estimated using Maximum (Log-) Likelihood
routines: One calculates the (log-) likelihood function for a number of parameter
combinations and picks the highest.



Goodness of Fit

Goodness of Fit in probabilistic models mostly measure either precision in calculated
probabilities compared to observed frequencies or prediction of observed data.

Often GOF statistics implicitly compare the model with one that includes only a
constant by comparing the calculated likelihoods, 𝐿1 and 𝐿0 respectively.

Amemiya Pseudo-𝑅2:

1 − 1
1 + 2(𝑙𝑜𝑔𝐿1 − 𝑙𝑜𝑔𝐿0)/𝑁

McFadden statistic:

1 − 𝑙𝑜𝑔𝐿1
𝑙𝑜𝑔𝐿0



Restricted Dependent Variables: TOBIT

When dependent variables are continuous, but constrained, more problems arise.
Examples are when a variable is zero for a large part of the population and positive for
the rest (eg. expenditures, income from a certain type of activity or asset, work hours).

Tobit models are well-suited for such latent variable problems. It applies conditional
probabilities ot the problem, usually introducing a Gaussian Normal density function.

𝑃(𝑦𝑖 = 0) = 𝑃(𝑦∗
𝑖 ≤ 0) = 𝑃(𝜖𝑖 ≤ −𝑥′

𝑖𝛽) = 1 − Φ( 𝑥′
𝑖𝛽
𝜎 )

𝐸(𝑦𝑖 ∣ 𝑦𝑖 > 0) = 𝑥′
𝑖𝛽 + 𝐸(𝜖𝑖 ∣ 𝜖𝑖 > −𝑥′

𝑖𝛽) = 𝑥′
𝑖𝛽 + 𝜎 𝜙(𝑥′

𝑖𝛽/𝜎)
Φ(𝑥′

𝑖𝛽/𝜎)



Restricted Dependent Variables: TOBIT 2
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Restricted Dependent Variables: TOBIT 3

The parameters obtained in a Maximum-Likelihood procedure can be interpreted in
two ways. Note that the ML procedure has to simultaneously estimate 𝛽 and 𝜎.

Marginal impact on the probability to observe a zero value in the dependent variable:

𝜕𝑃(𝑦𝑖 = 0)
𝜕𝑥𝑖𝑘

= −𝜙( 𝑥′
𝑖𝛽
𝜎 ) 𝛽𝑘

𝜎

Marginal impact on the expected value of the dependent variable, conditional on a
positive realization:

𝐸(𝑦𝑖) = 𝑥′
𝑖𝛽Φ(𝑥′

𝑖𝛽/𝜎) + 𝜎𝜙(𝑥′
𝑖𝛽/𝜎)

𝜕𝐸(𝑦𝑖)
𝜕𝑥𝑖𝑘

= 𝛽𝑘Φ(𝑥′
𝑖𝛽/𝜎)

𝜕𝐸(𝑦∗
𝑖 )

𝜕𝑥𝑖𝑘
= 𝛽𝑘



Specification/Estimation Issues

Violations of the distributional assumptions on 𝜖𝑖 (e.g. non-normality and
heteroskedasticity) will lead to inconsistent parameter estimations.

Pagan and Vella (1989) propose a moment-based test for normality, as for normally
distributed errors it should hold that 𝐸(𝜖3/𝜎3 ∣ 𝑥𝑖) = 0 and 𝐸(𝜖4/𝜎4 − 3 ∣ 𝑥𝑖) = 0
(absence of skewness and kurtosis).



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model

One can argue that underlying the restriction of a continuous variable 𝑦 (say: wages)
lies a binary outcome ℎ (say: to seek employment or not).

𝑦∗
𝑖 = 𝑥′

1𝑖𝛽1 + 𝜖1
ℎ∗

𝑖 = 𝑥′
2𝑖𝛽2 + 𝜖2

𝑦𝑖 = 𝑦∗𝑖, ℎ𝑖 = 1 𝑖𝑓 ℎ∗
𝑖 > 0

𝑦𝑖 = 0, ℎ𝑖 = 0 𝑖𝑓 ℎ∗
𝑖 ≤ 0



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model 2

Under the assumption that 𝜖2 ∼ 𝑁(0, 1) ⇒ 𝜎2
2 = 1:

𝐸(𝑤𝑖 ∣ ℎ𝑖 = 1) = 𝑥′
1𝑖𝛽1 + 𝜎12

𝜙(𝑥′
2𝑖𝛽2)

Φ(𝑥′
2𝑖𝛽2)

𝜎12 = 𝜌12𝜎1
𝜌12 = 𝐶𝑜𝑟𝑟(𝜖1, 𝜖2)



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model 3

The model can be denoted as a maximum likelihood estimation.

𝑙𝑜𝑔𝐿3(𝛽, 𝜎2
1 , 𝜎12) = ∑

𝑖∈𝐼0

𝑙𝑜𝑔𝑃 (ℎ1 = 0) + ∑
𝑖∈𝐼1

[𝑙𝑜𝑔𝑓(𝑦𝑖 ∣ ℎ1 = 1) + 𝑙𝑜𝑔𝑃 (ℎ𝑖 = 1)]

= ∑
𝑖∈𝐼0

𝑙𝑜𝑔𝑃 (ℎ1 = 0) + ∑
𝑖∈𝐼1

[𝑙𝑜𝑔𝑓(𝑦𝑖) + 𝑙𝑜𝑔𝑃(ℎ𝑖 = 1 ∣ 𝑦𝑖)]



Selection Bias: Tobit 2-Model/Heckman 2-Step Selection Model 4

Heckman provides a two step estimation technique which is often applied in research.

𝑦𝑖 = 𝑥′
1𝑖𝛽1 + 𝜎12𝜆𝑖 + 𝜂𝑖

𝜆𝑖 = 𝜙(𝑥′
2𝑖𝛽2)

Φ(𝑥′
2𝑖𝛽2)

The only unknown in 𝜆𝑖 is 𝛽2, which can be estimated in a Tobit routine to be then
plugged into a linear regression for the upper equation.



Key Questions

▶ Which Gauss-Markov assumptions will always be violated with binary outcome
data?

▶ What is the relationship between a link function and marginal effects?
▶ What is the difference between a Logit and Probit link function?
▶ What is censored data, and why is it a porblem?
▶ What is the Tobit estimator and what is the importance of the inverse Mill’s ratio?
▶ What is the intuition behind the Heckman selection model?


