
6: Stationarity
GECO 6281 Advanced Econometrics 1 (Lab)

Patrick Mokre

Fall 2020



Recapitulation

▶ OLS and GLS
▶ Static Panel Data: LSDV, FE and RE estimation
▶ IV Regression
▶ Dynamic Panel Data: Anderson-Hsiao and Arellano-Bond instruments



Stationarity Matters (in time series)

A process is called strictly stationary if its properties are unaffected by a change of
time origin. (Verbeek, 2004, 258)

▶ Most econometrics investigation are concerned with moments of the joint
distribution, i.e. expected values of some transformation of the data. This
information is only meaningful if it is the same at any location within the data.

▶ We avoid spurious regressions, i.e. finding causality/correlation where there is
none due to shared trends.

▶ Wold’s decomposition theorem (every time series is made up by one
deterministic and one stochastic time series) holds only for stationary data.

Consequences: Economists will often transform data until it looks stationary (first
differencing, signal-noise filtering, …). This makes interpretation challenging.

Stationarity Matters for us: Panel data has a time dimension, temporal interactions
are exciting, but complex.



Stationary and Non-Stationary Processes
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Stationarity is not the end of the story

▶ Stationarity really only matters because it makes things easier. There are
interesting questions that go beyond stationary processes.

▶ Economic data is subject to a legal-political framework, which includes the
possibility of structural breaks. It might be stationary for some time, but not for
longer periods.

▶ Economic data is only observed for relatively short time periods. Stationarity is an
asymptotic property.

▶ Only rely on stationarity if you absolutely have to. Many non-stationary methods
of analysis do not require it and provide deeper insight!



How do we measure stationarity

▶ Engineers have it easier: “Stationarity can be defined in precise mathematical
terms, but for our purpose we mean a flat looking series […]” (NIST/SEMATECH
e-Handbook of Statistical Methods,
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm)

▶ Frequentist Econometricians have it harder: We pretend to attempt and find
evidence against our hypothesis, then are relieved when we don’t find it.

▶ Essentially stationarity/unit root testing is defining how a distribution could look
if it was not stationary, then compare our data to this.

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm


Defining Stationarity

Strict Stationarity: A process has the same statistical properties (moments) at any
given point in time. The joint distribution of (𝑋𝑡, 𝑋𝑡−1, ..., 𝑋𝑡−𝑗) is the same as
(𝑋𝑡−𝑘, 𝑋𝑡−𝑘−1, ..., 𝑋𝑡−𝑘−𝑗) ∀𝑡, 𝑗, 𝑘.

Most of the time, we are satisified with the first two moments of the joint distribution
(mean and variance).

Covariance Stationarity (“Weak Stationarity”): ∀𝑡, 𝑘, ℎ

𝐸[𝑋𝑡] = 𝜇 < ∞ (1)
𝑉 [𝑋𝑡] = 𝜎2

𝑋 = 𝛾(0) <= 𝛾0 < ∞ (2)
𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑘) = 𝑐𝑜𝑣(𝑋𝑡−ℎ, 𝑋𝑡−𝑘−ℎ) = 𝛾(𝑘) = 𝛾𝑘 (3)



Autocovariance and Autocorrelation

Covariance stationary (or ‘weakly stationary’) processes are characterized by their
time-constant autocovariance function 𝛾(.) ∶ ℤ → ℝ and equivalently their
autocorrelation function (ACF) 𝜌(.) ∶ ℤ → [−1, 1].
The autocorrelation function is scaleable.

𝜌(𝑘) = 𝜌𝑘 = 𝑐𝑜𝑟𝑟(𝑋𝑡, 𝑋𝑡−𝑘) = 𝛾𝑘
𝛾0

(4)

Note that 𝜌(0) = 1 and 𝜌(−𝑗) = 𝜌(𝑗).
We will investigate covariance stationarity using the autocorrelation function.



Time Series Processes

Autoregressive Processes (AR): The past values of the dependent variable
𝑦𝑡−1, ..., 𝑦𝑡−𝑝 explain the current realization 𝑦𝑡.

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ... + 𝜙𝑝𝑦𝑡−𝑝 + 𝜖𝑡

Moving Average Processes (MA): Past values of the error term (≡ deviation from the
mean) 𝜖𝑡−1, ..., 𝜖𝑡−𝑞 explain the current realization 𝑦𝑡.

𝑦𝑡 = 𝜖𝑡 + 𝛼1𝜖𝑡−1 + 𝛼2𝜖𝑡−2 + ... + 𝛼𝑞𝜖𝑡−𝑞



Stationary Processes

▶ AR processes 𝑋𝑡 = 𝛿 + ∑𝑝
𝑖=1 𝜙𝑖𝑋𝑡−𝑖 + 𝜖𝑡 with |𝜙| ≥ 1 are not stationary.

▶ AR processes 𝑋𝑡 = 𝛿 + ∑𝑝
𝑖=1 𝜙𝑖𝑋𝑡−𝑖 + 𝜖𝑡 with |𝜙| < 1 are not generally stationary.

They become more stationary over time (asymptotically stationary) and are
stationary if started in the infinite past or if the initial value is drawn from
specific distributions.

▶ MA processes of finite order are always stationary except the few starting
observations for which the lags do not (fully) exist.

In other words: AR processes are stationary if they have an MA representation via the
lag operator:

𝐿𝑋𝑡 = 𝑋𝑡−1
𝑋𝑡 = 𝛿 + 𝜙1𝑋𝑡−1 + ...𝜙𝑝𝑋𝑡−𝑝 + 𝜖𝑡

(1 − 𝜙1𝐿 − ...𝜙𝑝𝐿𝑝)𝑋𝑡 = 𝛿 + 𝜖𝑡

𝜙(𝐿)𝑋𝑡 = 𝜖𝑡 (5)



Unit roots

Most tests for stationarity test for the existence (and seek to reject) a unit root.

A process is said to have a unit root it the characteristic equation of a process has
one root 𝑚 (i.e. one solution when it is set to zero) equal to one.

𝑋𝑡 = 𝛿 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ... + 𝜙𝑝𝑋𝑡−𝑝 + 𝜖𝑡

0 = 1 − 𝜙1𝑚 − ... − 𝜙𝑝𝑚𝑝 (6)



Testing for Stationarity: Dickey Fuller

The most popular way of stationarity-related testing is testing for a unit root (i.e.,
trying to reject a unit root hypothesis). Take the Dicker-Fuller Method in its 𝜇 and 𝜏
variants.

𝑋𝑡 = 𝛿 + 𝜙𝑋𝑡−1 + 𝜖𝑡

𝐷𝐹𝜇 =
̂𝜙 − 1

𝑠.𝑒.( ̂𝜙)
(7)

𝑋𝑡 = 𝛿 + 𝛾 ∗ 𝑡 + 𝜙𝑋𝑡−1 + 𝜖𝑡

𝐷𝐹𝜏 =
̂𝜙 − 1

𝑠.𝑒.( ̂𝜙)
(8)

The Dickey-Fuller test statistic is not standard normal distributed under the null
hypothesis, critical values have to be calculated using Monte Carlo simulations.



Testing for Stationarity: Augmented Dickey-Fuller

The Augmented Dickey-Fuller test statistic generalizes the DF logic to more lags and
a more complex lag structure. The test statistic is a negative number, the smaller it is,
the more strongly the Null hypothesis (unit root) is rejected against one of the
possible alternative hypotheses (e.g. stationarity or trend stationarity).

Δ𝑋𝑡 = 𝛿 + 𝜋𝑋𝑡−1 +
𝑝

∑
𝑖=1

𝑐𝑖Δ𝑋𝑡−𝑖 + 𝜖𝑡

𝐴𝐷𝐹 = ̂𝜋
𝑠.𝑒.( ̂𝜋) (9)

A time trend can easily be included into the regression equation. The optimal lag
length is normally found using information criteria.



Testing Stationarity: KPSS Test

Rather than testing for non-stationarity, the test by Kwiatkowski, Perron, Shin and
Smith test for a Null hypothesis of stationarity.

Every time series can be decomposed into (1) a deterministic time trend, (2) a
random walk, and (3) a stationary error term (which is usually not white noise). KPSS
tests if the random walk is stationary.

1 Run 𝑋𝑡 = 𝛿 + 𝛾 ∗ 𝑡 + 𝜖𝑡 and save the residuals

2 Calculate the partial error sums for each period t: 𝑆𝑡 = ∑𝑡
𝑖=1 𝑒𝑖

3 Calculate the error variance 𝜎2

𝐾𝑃𝑆𝑆 =
𝑇

∑
𝑖+1

𝑆𝑡
𝜎2 (10)

KPSS is test weaker than ADF, and produces many Type-1 errors, i.e. rejects too
often. The test statistic is not standard normal distributed. The estimation of the
long-run error variance in a time series is usually performed using Kernel estimation.



Stationarity in Panel Data: LLC (2002)

Levin-Lin-Chu (2002) test for balanced Panels. The test assumes equal AR(1) 𝜌
coefficients in the panel, but allows for individual effects, time effects, and a time
trend. It is carried in a three-step procedure.

𝐻0: Each time series contains a unit root. 𝐻𝐴: Each time series is stationary.

1 Run the ADF regression including appropriate deterministic variables (intercept, time
trend, …) and individual lag lengths 𝑝. Δ𝑦𝑖,𝑡 = 𝛿𝑦𝑖,𝑡−1 + ∑𝑝

𝑙=1 𝜃𝑖,𝑙Δ𝑦𝑡−𝑙 + 𝛼𝑚,𝑖𝑑𝑚,𝑖

2 Create orthogalized residuals ̂𝑒𝑖,𝑡 and ̂𝑣𝑖,𝑡

2.1 ̂𝑒𝑖,𝑡 = Δ𝑦𝑖,𝑡 − ∑𝑝
𝑙

̂𝜃𝑙Δ𝑦𝑖,𝑡−𝑙 − ̂𝛼𝑚,𝑖

2.2 ̂𝑣𝑖,𝑡−1 = 𝑦𝑖,𝑡−1 − ∑𝑝
𝑙

̂𝜃𝑙Δ𝑦𝑖,𝑡−𝑙 − ̂𝛼𝑚,𝑖

3 Normalize the errors by the regression standard error from Step 1. ̃𝑒𝑖,𝑡 = ̂𝑒𝑖,𝑡/𝜎2
𝜖,𝑖,

̃𝑣𝑖,𝑡−1 = ̂𝑣𝑖,𝑡−1/𝜎2
𝜖,𝑖.

4 Estimate the ratio of short-run to long-run standard deviations, using a kernel
(e.g. Bartlett kernel)

5 Pool the error terms by regressing ̃𝑒𝑖,𝑡 = 𝛿 ̃𝑣𝑖,𝑡−1 + 𝑢𝑖,𝑡

6 Calculate the t statistic for 𝛿, adjust by the ratio from step 4



Stationarity in Panel Data: IPS (2003)

The Im-Pesaran-Shin test allows for individual AR(1) coefficients. It can thus be
applied to unbalanced panels, as long as there are no time gaps in the data.

𝐻0: All time series contain a unit root 𝐻𝐴: Some time series do not contain a unit
root


