10: Seemingly Unrelated Regressions (SUR)

GECO 6281 Advanced Econometrics 1 (Lab)

Patrick Mokre

Fall 2020

Recapitulation

- OLS and GLS
- Discrete Choice Modeling: LOGIT, PROBIT, TOBIT and Heckman's Selection Model
- Panel Data
- Instrumental Variable Regression
- ARDL Modeling
- Anderson-Hsiao, Arellano-Bond, Arellano-Bover/Blundell-Bond instrumentalization

Seemingly Unrelated Regressions

- One has a number of individual regressions, with different dependent and independent variables.
- However, the relationships captured in these regressions are correlated with each other.
- This correlation will materialize in the error terms.
- Estimating the system of regressions in a feasible generalized linear regression (fGLS), using the different variance-covariance matrix is more efficient than using stacked OLS.
- If one wanted to use the independent variables from some regression as the dependent variable in another, simultaneous regresion modeling is the appropriate generalization.

SUR 2

- The most intuitive simple example: $i \in N$ individuals, $t \in T$ periods, $k \in K$ covariates
- Actually, the covariates do not have to be the same, however, it is illustrative
- using SUR modeling makes sense if there is (a) a reasonable number of time periods and (b) the researcher believes the coefficients vary between individuals, and this difference matters.

There is N regressions

$$
\begin{array}{llcc}
y_{i t} & = & X_{i t}^{\prime} & \beta_{i}+\epsilon_{i t},
\end{array} \quad i=1, \ldots, N
$$

Gauss-Markov conditions are in general satisified, especially:

$$
\begin{aligned}
E\left(\epsilon_{i} \mid X_{i}\right) & =0 \\
E\left(\epsilon_{i} \epsilon_{i}^{\prime} \mid X\right) & =\sigma^{2} I_{i}
\end{aligned}
$$

But:

$$
\begin{aligned}
& E\left(\epsilon_{i r} \epsilon_{i s}\right)=0 \quad \forall r \neq s \\
& E\left(\epsilon_{i t} \epsilon_{j t}\right)=\omega_{i j} \neq 0 \quad \text { for some } i, j
\end{aligned}
$$

To understand the GLS method, one stacks the equations in a matrix of matrices.

Figure 1: Stacked Regressions in Matrix notation

SUR 4

Remember that $E\left(\epsilon_{i t} \epsilon_{j t} \mid X\right)=\omega_{i j}$ and define a $N \times N$ matrix $\Sigma=\omega_{i j}$.

- The most popular estimation method is a 2 Step GLS.
$>$ In Step 1 , run all N regressions individually. Use the residuals to estimate $\hat{\Sigma}$: $\hat{\omega}_{i j}=\frac{1}{T} \epsilon_{i}^{\prime} \epsilon_{j}$
- In Step 2 run a GLS regression with a variance matrix $\hat{\Omega}=\hat{\Sigma} \otimes I_{T}$
- $\hat{\beta}_{G L S}=\left(X^{\prime}\left(\hat{\Sigma}^{-1} \otimes I_{T}\right) X\right)^{-1} X^{\prime}\left(\hat{\Sigma}^{-1} \otimes I_{T}\right) y$
- Alternatively, SUR can be estimated using maximum likelihood or iterative GLS.
- SUR is equivalent to OLS if Σ is diagonal (there is no covariance between the error terms).
- When each equation has the same covariates, the estimators are numerically equivalent to OLS.

SUR 5: Breusch-Pagan Test for Independence of equations

Breusch and Pagan (1980) present a Lagrange Multiplier test for independence of the regressions.

For N observations in M equations, $r_{m, l}$ denotes the estimated correlation between equation residuals.

$$
\lambda=N \sum_{m=1}^{M} \sum_{l=1}^{m-1} r^{2} m l
$$

The test staistic is χ^{2} distributed with $\frac{M(M-1}{2}$ degrees of freedom.
On a sidenote, the R^{2} can be used to compare the explanatory power gain between nested models, but is in general not well-defined for GLS.

Slope heterogeneity

(Pesaran 2015: Chapter 29.4.2)

- With sufficiently large T (time periods), heterogeneous slopes can be measured for each individual.
- Sometimes the differential between slopes is the key information in a dataset, e.g. when analyzing wage differentials, international power relations, effects of political frameworks.
- At the same time, slope heterogeneity can be designed such that common features are not neglected.
- We need to assume stationary dependent and independent variables (for now).
- Most general ("descriptive") formulation: $y_{i t}=x_{i t}^{\prime} \beta_{i t}+u_{i t}$.

Slope heterogeneity 2

Assume that $\beta_{i t}$ depends on a common value β as well as a random variable $\eta_{i t}$, drawn from a distribution whose parameters do not vary over \mathbf{N} and \mathbf{T}.

$$
\begin{aligned}
\beta_{i t} & =\beta+\eta_{i t} \\
E\left(\eta_{i}\right) & =0, E\left(\eta_{i} x_{i t}^{\prime}\right)=0 \\
E\left(\eta_{i} \eta_{i}\right) & =\Omega_{\eta}, E\left(\eta_{i} \eta_{j}\right)=0 \quad \forall i \neq j
\end{aligned}
$$

Hsiao's example is most intuitive: $\beta_{i t}=\beta+\eta_{i}+\lambda_{t}$.

Heterogenous Slopes in STATA: Mean Groups

Markus Eberhardt 2012: "Estimating panel time-series models with heterogeneous slopes."

$$
\begin{aligned}
y_{i t} & =\beta_{i} x_{i t}+u_{i t} \\
u_{i t} & =\alpha_{1 i}+\lambda_{i} f_{t}+\epsilon_{i t} \\
x_{i t} & =\alpha_{2 i}+\lambda_{i} f_{t}+\gamma_{i} g_{t}+e_{i t}
\end{aligned}
$$

Only y and x are observed, all factors in u are unobserved, and $\epsilon_{i t}$ is the error term. The principle idea is to estimate N OLS regressions, the find a weighted average of the coefficients.

Heterogenous Slopes in STATA: Mean Groups 2

- Pesaran and Smith 1995: No cross-sectional dependency, but common linear trend
- Pesaran 2006: Cross-Sectional Dependencies and Unobservables in $x_{i t}$ (e.g. productivity shocks). Cross-Section Averaged Parameters cannot be interpreted meaningfully, but allow for consistent estimation of coefficients for observed variables.
- Eberhardt and Teal: 3 Step procedure, allows for estimation of coefficients for unobservables (important for production functions, total factor productivity)

ARDL with Heterogenous Slopes 1

(https://www.stata.com/meeting/switzerland18/slides/switzerland18_Ditzen.pdf)
Reminder of ARDL setup to test for long-run relationship, including Error Correction Model for short-run adjustment processes.

- Level-ARDL

$$
y_{t}=\alpha_{0}+\alpha_{1} t+\sum_{i=1}^{p} \phi_{i} y_{t-i}+\sum_{j=0}^{q} \beta_{j}^{\prime} x_{t-j}+v_{t}
$$

- Conditional ECM:

$$
\Delta y_{t}=\alpha_{0}+\alpha_{1} t+\alpha_{2}\left(y_{t-1}-\theta x_{t}\right)+\sum_{i=1}^{p-1} \psi_{y i} \Delta y_{t-i}+\sum_{i=0}^{q-1} \psi_{x i}^{\prime} \Delta x_{t-i}+u_{t}
$$

- $\theta=\left(\sum_{j=0}^{q} \beta_{j}\right) / \alpha_{2}$ and $\alpha_{2}=1-\sum_{i=1}^{p} \phi_{i}$
- Pesaran's Common Correlated Effect (CCE) estimation:
$\beta_{i}=\beta+v_{i}, \quad v_{i} \sim \operatorname{IID}\left(0, \Omega_{v}\right)$ and $x_{i t}=\gamma_{i}^{\prime} f_{t}+u_{i t}$ where $u_{i t}$ is allowed ot be serially correlated, where $\hat{\beta}_{M G}=1 / N \sum \hat{\beta}_{i}$.

ARDL with Heterogenous Slopes 2

Setup with individual slopes, a common factor and a heterogenous "factor loading", including mean group estimation.

$$
\begin{aligned}
& y_{i t}=\lambda_{i} y_{i t-1}+\beta_{i} x_{i t}+u_{i t} \\
& u_{i t}=\gamma_{i}^{\prime} f_{t}+\varepsilon_{i t} \\
& \hat{\beta}_{M G}=\frac{1}{N} \sum \beta_{i}, \quad \hat{\lambda}_{M G}=\frac{1}{N} \sum \lambda_{i}
\end{aligned}
$$

Note: For consistent estimation of both $\widehat{\beta}_{i}$ and $\hat{\beta}_{M G}$, large N and T are necessary. If the common unobserved factor f_{t} is left out, the omitted variable bias can be substantial.

Individual fixed effects can be added, but are not the crucial point in the methodology.

$$
\begin{array}{rlrl}
\beta_{i}=\beta+v_{i}, & v_{i} & \sim \operatorname{IID}\left(0, \Omega_{\beta}\right) \\
\lambda_{i}=\lambda+\zeta_{i}, & \zeta_{i} \sim \operatorname{IID}\left(0, \Omega_{\zeta}\right)
\end{array}
$$

ARDL with Heterogenous Slope 3

Formulation of a special error correction model (Dynamic Common Correlated Effects Estimation):

$$
\Delta y_{i t}=\phi_{i}\left(y_{i t-1}-\theta_{i} x_{i t}\right)-\sum_{j=1}^{p} \lambda_{j i} \Delta_{j} y_{i t-j}-\sum_{j=0}^{q} \beta_{j i}^{\prime} \Delta_{j} x_{i t}+\sum_{j=0}^{r} \gamma_{i j} \overline{z_{i t}}+u_{i t}
$$

Where

- θ the long-run coefficients from the OLS level regression.
- Δ_{j} the lag-length denomination, i.e. $\Delta_{3} x_{i t}=x_{i t}-x_{i t-3}$.
- $\hat{\phi}_{i}=\left(1-\sum_{j=1}^{p} \hat{\lambda}_{i j}\right)$.
- $\bar{z}_{t}=\left(\bar{y}_{t}, \bar{x}_{t}\right)$, the cross-sectional averages.

You want to install the moremata, xtmg and xtdcce2 packages from SSC.

